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Chapter 1 

Summary 

1.1 Objectives 

Current IU algorithms and systems lack the robustness to successfully process imagery 
acquired under real-world scenario. They do not provide the necessary consistency, reliabil- 
ity and predictability of results. Robust 3-D object recognition, in practical applications, 
remains one of the important but elusive goals of IU research. With the goal of achieving ro- 
bustness, our research at UCR is directed towards learning parameters, feedback, contexts, 
features, concepts, and strategies of IU algorithms for model-based object recognition. 

Our multistrategy learning-based IU approach selectively applies machine learning tech- 
niques at multiple levels to achieve robust recognition performance. At each level, appro- 
priate evaluation criteria are employed to monitor the performance and self-improvement 
of the system. 

1.2 Accomplishments 

1.2.1    Learning Feedback and Parameters In an IU System (Chapters 2, 
3 and 4) 

Problem: To develop theoretically sound approaches to control feedback which are based 
on the results of recognition and to learn segmentation and feature extraction parameters 
for robust model-based recognition. 



Approach: We have developed two approaches based on reinforcement learning for closed- 
loop object recognition in a multi-level vision system. These approaches use the team of 
learning automata algorithm and the delayed reinforcement learning algorithm. 

The closed-loop object recognition system evaluates the performance of segmentation 
and feature extraction by using the recognition algorithm as part of the evaluation function. 
Recognition confidence is used as a reinforcement signal to the image segmentation or feature 
extraction processes. By using the recognition algorithm as part of the evaluation function, 
the system is able to develop recognition strategies automatically, and to recognize objects 
accurately on newly acquired images. As compared to the genetic algorithm which simply 
searches a set of parameters that optimize a prespecified evaluation function, here we have 
a recognition algorithm as part of the evaluation function. 

In order to speed up the above algorithms we have developed a general approach (chapter 
4) to image segmentation and object recognition that can adapt the image segmentation 
algorithm parameters to the changing environmental conditions. The edge-border coin- 
cidence is used for both local and global segmentation evaluation. However, since this 
measure is not reliable for object recognition, it is used in conjunction with model matching 
in a closed-loop object recognition system. Segmentation parameters are learned using a 
reinforcement learning algorithm that is based on a team of learning automata and uses 
edge-border coincidence or the results of model matching as reinforcement signals. The 
edge-border coincidence is used initially to select image segmentation parameters using the 
reinforcement learning algorithm. Subsequently, feature extraction and model matching are 
carried out for each connected component which passes through the size filter based on the 
expected size of objects of interest in the image. The control switches between learning 
integrated global and local segmentation based on the quality of segmentation and model 
matching. 

Accomplishemnts: Using the Phoenix algorithm for the segmentation of color images, 
a clustering-based algorithm for the recognition of occluded 2-D objects and a team of 
learning automata algorithm, or a delayed reinforcement learning algorithm, we show that 
in simple real scenes with varying environmental conditions and camera motion, effective 
low-level image analysis and feature extraction can be performed. We show the performance 
improvement of an IU system combined with learning over an IU system with no learning. 

Future Work: (a) Develop a complete reinforcement learning-based system for 3-D model- 
based object recognition with feedback among various levels, (b) Evaluate the performance 
of the technique in real-world applications such as automatic target recognition (ATR) or 
navigation, (c) Explore the delayed reinforcement learning (RL) algorithm for evaluating 
robustness of an object recognition system and the amount of training data that can be 
generated by the RL algorithm. 



1.2.2 Learning To Integrate Vusual Information (Chapter 5) 

Problem: To learn algorithm parameters, develop algorithms and evaluation criteria for 
multisensor image segmentation and recognition from images acquired under varying envi- 
ronmental conditions. 

Aprroach: Genetic learning and other hybrid methods such as a combination of genetic 
algorithms and hill climbing. 

Accomplishments: Our initial research using outdoor video imagery and the Phoenix 
algorithm has demonstrated that (a) adaptive image segmentation can provide over 30im- 
provement in performance, as measured by the quality of segmentation, over non-adaptive 
techniques, and (b) learning from experience can be used to improve the performance over 
time. In our current work, we show that our approach scales with respect to the number of 
parameters and the size of the search space. Genetic learning combined with a hill-climbing 
technique is able to adaptively select good segmentation parameters and to generate the 
best result using the least number of segmentations. ^From experiments designed to eval- 
uate the scalability of our approach, we find that for the case of a four Phoenix parameter 
set whose search space size is 1 million, we search about 0.5% of the search space. 

Future Work: (a) Learning the optimal parameter settings for adaptive image segmen- 
tation of multisensor imagery, (b) learning the optimal selection of image segmentation 
algorithms and evaluation criteria for multi-scenario, and (c) learning the optimal sensor 
combinations and cross-sensor validation of segmentation results. 

1.2.3 Learning To Integrate Context With Clutter Models (Chapter 6) 

Problem: To integrate contextual information with clutter models for target detection and 
recognition. Current image metrics commonly used to characterize images do not correlate 
well with the performance of target recognition systems. 

Approach: The contextual parameters, which describe the environmental conditions for 
each training example, are used in a reinforcement learning paradigm to improve the clutter 
models and enhance target detection performance under multi-scenario situations. New Ga- 
bor transform-based features and other statistical image features are used to capture the sta- 
tistical properties of natural backgrounds in visible and FLIR images. The non-incremental 
self-organizing map approach commonly used in an unsupervised mode is extended, by the 
addition of a near-miss injection algorithm, and used as an incremental supervised learning 
process for clutter characterization. 

Accomplishments: A fast algorithm to compute the Gabor transform of a given image has 
been implemented. We have implemented two new Gabor transform-based feature groups 



and tested their classification performance on natural backgrounds. Experimental results 
show that the two feature groups could capture certain characteristics of the backgrounds, 
which are consistent with our theoretical expectations based on the physical meaning of 
each attribute within the feature group. 

Using 40 second generation FLIR images, four contextual parameters (time of the day, 
depression angle, range to the target and air temperature) and 5 feature groups, we find 
lOOlOclassifying a feature cell (rectangular regions in an image) as a clutter or a target. 

Future Work: (a) Prove the convergence of the stochastic reinforcement learning algo- 
rithm for multi-feature cases, (b) Test the approach on a larger data set with a variety of 
contextual parameters, (c) Find the most influential environmental parameters for a given 
sensor, find how a feature group is affected by a given environmental parameter and find if 
we can make a feature invariant with respect to a given environmental parameter through 
normalization of the sensor data. 

1.2.4 Input Adaptation (Chapter 7) 

Problem: To improve the performance of an IU algorithm by adapting its input data to the 
desired form so that it is optimal for the given algorithm. 

Approach: Two general methodologies for the performance improvement of an IU system 
are based on optimization of algorithm parameters and adaptation of the input. Unlike 
the genetic learning case for adaptive image segmentation, here we focus on the second 
methodology and use modified Hebbian learning rules to build adaptive feature extractors 
which transform the input data into the desired form for a given algorithm. Learning 
rules are based on different loss functions and are suitable for extracting expressive or 
discriminating features from the input. 

Accomplishments: The feasibility of the approach is shown by designing an input adaptor 
for a thresholding algorithm for target detection using SAR and FLIR images. The results 
are excellent with input adaptor compared to the case with no input adaptor. 

Future Work: (a) Develop transformations from input data to salient features needed 
for various classes of algorithms, (b) Compare performance with/without input adaptor for 
algorithms used in applications such as automatic target recognition and navigation. 

1.2.5 Learning Recognition Strategies(Chapter 8) 

Problem: To automate acquisition of recognition strategies in dynamic environments. 

Approach: Most current model-based approaches to object recognition utilize geometric 



descriptions of object models, i.e., they emphasize the recognition problem as a character- 
istic of individual object models only. Various other factors, however, may influence the 
outcome of recognition in a real application such as photointerpretation. These factors in- 
clude contextual information, sensor type, target type, scene models, and other non-image 
information. Using Case-Based Reasoning (CBR), successful recognition strategies (contex- 
tual information, algorithms, features, parameters, etc.) are stored in memory as cases and 
are used to solve new problems. 

Since there are no algorithms that show acceptable performance over all different image 
sets that can be input to a system, we categorize images into classes and find the best 
algorithm for each class. When new image is provided to recognize an object such as a 
particular aircraft type, the new image is first categorized into the most similar class and 
then processed using the best algorithm known beforehand. 

Categorization of images is, however, a very difficult problem. Instead of categorizing 
an image, a region of interest (ROI) is classified. For training images, ROIs are acquired 
and divided into classes by a human operator. The best algorithm is also selected by a 
human operator during training. Once images are categorized, characteristics of image 
sets are compiled statistically. These compiled probability distributions of values for each 
characteristic feature are utilized to find the most similar class. Characteristic features fall 
into two categories: contextual information and pure image metrics information. Weather, 
time of image acquisition, and viewing angles are proposed as contextual information. Ho- 
mogeneity factor, convexity factor, and agglomeration factor are suggested as pure image 
metrics information. 

Accomplishments: We have developed the basic elements of the CBR paradigm. We 
have experimented extensively with a C-based algorithms for aircraft recognition in aerial 
photographs. We have written code for characterizing image data sets. 

Future Work: (a) Develop a prototype system which will have all the basic elements of 
CBR. (b) Select the best image metrics based on the discriminating power for categorizing 
images, (c) Develop reasoning, adaptation and indexing approaches that will make CBR 
an effective approach for IU applications. 

1.2.6    Learning Composite Visual Concepts(Chapter 9) 

Problem: Current grouping techniques use only perceptually motivated, low-order geomet- 
rical relationships but no object model information, to assemble simple features of the same 
type. As a result, the full potential of grouping for solving the indexing problem has not 
been realized. 



Approach: Discover groups that have both a simple description and are distinctive for 
indexing into the model database, using a variant of explanation-based learning. The use 
of a two-stage grouping strategy combines domain-independent perceptual grouping and 
model-based grouping with a database of high-order structural arrangements. 

Accomplishments: We have specified the goals, prerequisites, and preliminary formalism 
for "inventing" significant structural groupings from multi-class primitives. 

Future Work: Implement the approach and evaluate its effectiveness for grouping in 
various task domains. 

1.3    Publications(l October 95 and 31 December 96) 

1.3.1    Published 

1. B. Bhanu, S. Lee and J. Ming, "Adaptive Image Segmentation Using a Genetic Al- 
gorithm," IEEE Transactions on Systems, Man and Cybernetics, Vol. 25, No. 12, pp. 
1543-1567, December 1995. 

2. B. Bhanu, S. Lee and S. Das, "Adaptive Image Segmentation Using Genetic and 
Hybrid Search Methods," IEEE Transactions on Aerospace and Electronic Systems, Vol. 
31, No. 4, pp. 1268-1291, October 1995. 

3. B. Bhanu, X. Wu, and S. Lee, "Genetic Algorithms for Adaptive Image Segmen- 
tation," Chapter 11, in "Early Visual Learning" Edited by S. Nayar and T. Poggio, pp. 
269-298, Oxford University Press, 1996. 

4. S. Rong and B. Bhanu, "Modeling Clutter and Context for Target Detection in 
Infrared Images," IEEE Conference on Computer Vision and Pattern Recognition, San 
Francisco, CA, pp. 106-113, June 16-20, 1996. 

5. J. Peng and B. Bhanu, "Closed-Loop Object Recognition Using Reinforcement Learn- 
ing," IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, 
pp. 538-543, June 16-20, 1996. 

6. Y. Zheng and B. Bhanu, "Adaptive Object Detection Based on Modified Hebbian 
Learning," International Conference on Pattern Recognition, Vienna, Austria, August 25- 
30,1996. 

7. J. Peng and B. Bhanu, "Delayed Reinforcement Learning for Closed-Loop Object 
Recognition," Proc. International Conference on Pattern Recognition, Vienna, Austria, 
Oct. 26-29 August 1996. 

8. S. Rong and B. Bhanu, "Reinforcement Learning for Integrating Context with Clutter 



Models for Target Detection," Proc. ARPA Image Understanding Workshop, Palm Springs, 
CA, pp. 1389-1394, February 12-16, 1996. 

9. J. Peng and B. Bhanu, "Delayed Reinforcement Learning for Closed-Loop Object 
Recognition," Proc. ARPA Image Understanding Workshop, Palm Springs, CA, pp. 1429- 
1436, February 12-16, 1996. 

10. Y. Zheng and B. Bhanu, "Performance Improvement by Input adaptation Using 
Modified Hebbian Learning," Proc. ARPA Image Understanding Workshop, Palm Springs, 
CA, pp. 1381-1388, February 12-16, 1996. 

11. B. Bhanu, "Image Understanding Research at UC Riverside: Robust Recognition 
of Objects in Real-World Scenes," Proc. ARPA Image Understanding Workshop, Palm 
Springs, CA, pp. 117-128, February 12-16, 1996. 

1.3.2 Accepted but not yet published 

1. J. Ming and B. Bhanu, "A Multistrategy Learning Approach for Target Model Recogni- 
tion, Acquisition and Refinement," Int. J. on Pattern Recognition and Artificial Intelligence. 

1.3.3 Submitted but not yet accepted 

1. J. Peng and B. Bhanu, "Delayed Reinforcement Learning for Closed-Loop Object Recog- 
nition," IEEE Trans, on Systems, Man and Cybernetics, (Revised). 

3. J. Peng and B. Bhanu, "Robust Image Segmentation Using Reinforcement Learning," 
IEEE Trans, on Pattern Analysis and Machine Intelligence, (Revised). 

4. Y. Zheng and B. Bhanu, "Adaptive Object Detection From Multisensor Data," IEEE 
Trans, on Systems, Man and Cybernetics, June 1996. 

5. Y. Zheng and B. Bhanu, "Adaptive Object Detection From Multisensor Data," 
IEEE International Conference on Multisensor Fusion and Integration of Intelligent Sys- 
tems, Washington, D.C., Dec. 8-11, 1996. 

6. S. Das and B. Bhanu, "Computational Vision: A Learning Perspective," Submitted 
to ACM Computing Surveys, (Under Revision). 



1.4    Interactions/Transitions 

1.4.1 Participation/presentations at meetings, conferences, seminars 

Presented papers at the DARPA Image Understanding Workshop, Feb. 1996; IEEE Conf. 
on Computer vision and Pattern Recognition, June 1996; International Conf. on Pattern 
Recognition, Aug. 1996. 

1. Chair, IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 
CA, June 1996. 

2. ARPA Image Understanding Workshop, Palm Springs, CA, Feb. 12-16, 1996. 

3. Program Committee, International Workshop on Structural and Syntactic Pattern 
Recognition (SSPR'96), Leipzig, Germany, August 20-23, 1996. 

4. Program Committee, SPIE Conference on Neural Network Applications to Image 
Processing, San Jose, February 1996. 

5. Program Committee, Second International Conference on Multisensor Fusion and 
Integration for Intelligent Systems, Dec. 8-11, 1996, Washington, D.C. 

1.4.2 Consultative and advisory functions 

Edited a special issue of IEEE Trans, on Image Processing on Automatic Target Detection 
and Recognition (with Ed Zelnio of WRDC; Dan Dudgeon of MIT Lincoln Lab; Azriel 
Rosenfeld of Univ. of Maryland, David Casasent of Carnegie Mellon University; and Irving 
Reed of Univ. of Southern California). (To be Published Jan. 1997) 

1.4.3 Transitions 

(i) Honeywell Inc. is using genetic algorithm for adapting algorithms to multiscenarios in 
the RSTA (Reconnaissance, Surveillance and Target Acquisition) Program from DARPA. 

Genetic learning is also being used in the focus-of-attention module for image segmen- 
tation/labeling (in the MSTAR program of ARPA). 

Our publications (papers, patent and book) were the first in this area. 

(ii) Our research on closed-loop object recognition and context reinforced clutter char- 
acterization using reinforcement learning will be useful for target detection, training on the 
fly, model acquisition, and exploitation of SAR/FLIR images for adapting image under- 
standing algorithms to sensor operating conditions and deployment environments, as well 



as performance characterization of image understanding systems for image exploitation in 
the context of battlefield awareness concept pursued by the DOD. 

We expect our research to contribute to the SAIP ACTD and MSTAR programs from 
DARPA and WRDC. 

1.5    New discoveries, inventions, or patent disclosures 

We have developed some novel techniques and we have some results for context reinforced 
ATR using learning techniques. These results have yet to be validated on a larger dataset. 



Chapter 2 

Closed-Loop Object Recognition 
Using Reinforcement Learning 

Current computer vision systems whose basic methodology is open-loop or filter type typi- 
cally use image segmentation followed by object recognition algorithms. These systems are 
not robust for most real-world applications. In contrast, the system presented here achieves 
robust performance by using reinforcement learning to induce a mapping from input images 
to corresponding segmentation parameters. This is accomplished by using the confidence 
level of model matching as a reinforcement signal for a team of learning automata to search 
for segmentation parameters during training. The use of the recognition algorithm as part 
of the evaluation function for image segmentation gives rise to significant improvement of 
the system performance by automatic generation of recognition strategies. The system is 
verified through experiments on sequences of indoor and outdoor color images with varying 
external conditions. 

2.1     Introduction 

Image segmentation, feature extraction and model matching are the key building blocks of 
a computer vision system for model-based object recognition [18, 87]. The tasks performed 
by these building blocks are characterized as the low (segmentation), intermediate (feature 
extraction) and high (model matching) levels of computer vision. The goal of image seg- 
mentation is to extract meaningful objects from an image. It is essentially a pixel-based 
processing. Model matching uses a representation such as shape features obtained at the 
intermediate level for recognition. It requires explicit shape models of the object to be rec- 
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ognized. There is an abstraction of image information as we move from low to high levels 
and the processing becomes more knowledge based or goal directed. 

Although there is an abundance of proposed computer vision algorithms for object recog- 
nition, there have been few systems that achieve good performance for practical applications, 
for most such systems do not adapt to changing environments [10]. The main difficulties, 
typically associated with systems that are mostly open-loop or filter type, can be charac- 
terized as follows. 

1. The fixed set of parameters used in various vision algorithms often leads to ungraceful 
degradation in performance. 

2. The image segmentation, feature extraction and selection are generally carried out as 
preprocessing steps to object recognition algorithms for model matching. These steps 
totally ignore the effects of the earlier results (image segmentation, feature extraction, 
and model matching) on the future performance of the recognition algorithm. 

3. Generally the criteria used for segmentation and feature extraction require elaborate 
human designs. When the conditions for which they are designed are changed slightly, 
these algorithms fail. Furthermore, the criteria themselves can be a subject of debate 

[12]. 

4. Object recognition is a process of making sequences of decisions, i.e., applying vari- 
ous image analysis algorithms. Often the usefulness of a decision or the results of an 
individual algorithm can only be determined by the final outcome (e.g. matching con- 
fidence) of the recognition process. This is also known as "vision-complete" problem 
[17], i.e., one cannot really assign labels to the image without the knowledge of which 
parts of the image correspond to what objects. 

This paper presents a learning based vision framework in which the above problems 
can be adequately addressed. The underlying theory is that any recognition system whose 
decision criteria for image segmentation and feature extraction, etc. are developed au- 
tonomously from the outcome of the final recognition might transcend all these problems. 
A direct result of the theory is that the low and high level components of a vision system 
must interact to achieve robust performance under changing environmental conditions. Our 
system accomplishes this by incorporating a reinforcement learning mechanism to control 
the interactions of different levels within it. Specifically, the system takes the output of the 
recognition algorithm and uses it as a feedback to influence the performance of the segmen- 
tation process. As a result, the recognition performance can be significantly improved over 
time with this method. 
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One attractive feature of the approach is that it includes the matching or recognition 
component as part of the evaluation function for image segmentation in a systematic way. 
An additional strength is that the system develops its independent decision criteria (segmen- 
tation parameters) to best serve the underlying recognition task. It should be emphasized 
that our interest is not in a simple mixture of learning and computer vision, but rather 
in the principled integration of the two fields at the algorithmic level. Note that the goal 
here is to seek a general mapping from images to parameter settings of various algorithms 
based on recognition results. To our knowledge, however, no such approach exists in the 
computer vision field. Also there is no work in the neural network field (e.g., application of 
Neocognition [27]) for parameter adaptation of segmentation algorithms [12]. 

This work is most closely related to the work by Bhanu et al. [12, 13, 14], where 
they describe a system that uses genetic and hybrid algorithms for learning segmentation 
parameters. However, the recognition algorithm is not part of the evaluation function 
for segmentation in their system. The genetic or hybrid algorithms simply search for a 
set of parameters that optimize a prespecified evaluation function (based on global and 
local segmentation evaluation) that may not best serve the overall goal of robust object 
recognition. Furthermore, the papers assume that the location of the object in the image 
is known for specific photointerpretation application. In our work, we do not make such 
an assumption. We use explicit geometric model of an object, represented by its polygonal 
approximation, to recognize it in the image. 

In addition, Wang and Binford [91] and Ramesh [69] have investigated statistical meth- 
ods for performance evaluation and tuning free parameters of an algorithm. Wang and 
Binford [91] presented a theoretical analysis for edge estimation and showed how one can 
select the gradient threshold (tuning parameter) for edge detection. Ramesh [69] has de- 
veloped a methodology for the analysis of computer vision algorithms and systems using 
system engineering principles. To characterize the performance of an algorithm he developed 
statistical models for ideal image features (such as edges, corners) and random perturba- 
tions at input/output of an algorithm. Additionally, prior distributions for image features 
are also obtained. Using these models and a criterion function, he can characterize the 
performance of a given algorithm as a function of tuning parameters and determine these 
parameters automatically. Our approach presented in this paper differs significantly from 
Ramesh's [69] approach, (a) Ramesh's approach is open loop, our approach is closed loop. 
In our approach recognition results determine how the segmentation parameters should be 
changed, (b) Ramesh is tuning the parameters of an individual algorithm - it is known 
that the optimization of individual components does not necessarily gives the optimal re- 
sults for the system. We are working with a complete recognition system (segmentation, 
feature extraction and model matching components) and improving the performance of the 
complete system, (c) Ramesh builds elaborate statistical models (using the training data) 
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that require complex processes of annotation and approximating the measured distributions 
with mathematical functions to be used later. Our learning approach does not build explicit 
statistical models. It uses geometrical models during model matching, (d) It is relatively 
easier to build statistical models for algorithms like edge and corner detection. For complex 
algorithms like Phoenix it is difficult to model the "perfect" algorithm behavior analytically 
since the performance of segmentation depends nonlinearly with the changes in parameter 
values and there are some heuristics used in the algorithm. Considering the above factors 
our approach is more general for the problem that we are trying to solve. We have developed 
a learning based approach presented in this paper. 

Section 2.2 describes a general framework for reinforcement learning-based adaptive im- 
age segmentation. Section 2.3 describes the reinforcement learning paradigm and the par- 
ticular reinforcement learning algorithm employed in our system. Section 2.4 presents the 
experimental results evaluating the system and section 2.5 concludes the paper. Two ap- 
pendices describe the basic segmentation and model matching algorithms used to perform 
experiments for closed-loop object recognition using reinforcement learning. 

2.2    Reinforcement Learning System for Segmentation 
Parameter Estimation 

2.2.1 The Problem 

Consider the problem of recognizing an object in an input image, assuming that the model of 
the object is given and that the precise location of the object in the image is unknown. The 
conventional method, shown in Figure 2.1, for the recognition problem is to first segment 
the input image, then extract and select appropriate features from the segmented image, 
and finally perform model matching using these features. If we assume that the matching 
algorithm produces a real valued output indicating the degree of success upon its completion, 
then it is natural to use this real valued output as feedback to influence the performance of 
segmentation and feature extraction so as to bring about system's earlier decisions favorable 
for more accurate model matching. The rest of the paper describes a reinforcement learning- 
based vision system to achieve just that. 

2.2.2 Learning to Segment Images 

Our current investigation into reinforcement learning-based vision systems is focused on 
the problem of learning to segment images. An important characteristic of our approach is 
that the segmentation process takes into account the biases of the recognition algorithm to 
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Figure 2.1: Conventional multi-level system for object recognition. 

develop its own decision strategies. A consequence of this is that the effective search space 
of segmentation parameters can be dramatically reduced. As a result, more accurate and 
efficient segmentation and recognition performance can be expected. 

Image Segmentation 

We begin with image segmentation [40] because it is an extremely important and difficult 
low-level task. All subsequent interpretation tasks including object detection, feature ex- 
traction, object recognition and classification rely heavily on the quality of the segmentation 
process. The difficulty arises for image segmentation when only local image properties are 
used to define the region-of-interest for each individual object. It is known [10, 24] that 
correct localization may not always be possible. Thus, a good image segmentation cannot 
be done by grouping parts with similar image properties in a purely bottom-up fashion. 
Difficulties also arise when segmentation performance needs to be adapted to the changes 
in image quality, which is affected by variations in environmental conditions, imaging de- 
vices, lighting, etc. The following are the key characteristics [12] of the image segmentation 
problem: (1) When presented with a new image, selecting the appropriate set of algorithm 
parameters is the key to effectively segmenting the image. (2) The parameters within most 
segmentation algorithms typically interact in a complex, non-linear fashion, which makes it 
difficult to model the parameters' behavior analytically. (3) The variations between images 
cause changes in the segmentation results, the objective function that represents segmenta- 
tion quality varies from image to image. Also, there may not be a consensus on segmentation 
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Figure 2.2: Reinforcement learning-based multi-level system for object recognition. 

quality measures. 

Our Approach 

Each combination of segmentation parameters produces, for a given input, an unique seg- 
mentation image from which a confidence level of model matching can be computed. The 
simplest way to acquire high pay-off parameter combinations is through trial and error. 
That is, generate a combination of parameters, compute the matching confidence, generate 
another combination of parameters, and so on, until the confidence level has exceeded a 
given threshold. Better yet, if a well-defined evaluation function over the segmentation pa- 
rameter space is available, then local gradient methods, such as hill-climbers, suffice. While 
the trial-and-error methods suffer from excessive demand for computational resources, such 
as time and space, the gradient methods suffer from the unrealistic requirement for an eval- 
uation function. In contrast, reinforcement learning performs trials and errors, yet does not 
demand excessive computational resources; it performs hill-climbing in a statistical sense, 
yet does not require an evaluation function. In addition, it can generalize over unseen images 
as we shall see later. Furthermore, it can be easily adapted to multi-level computer vision 
systems. It is also feasible to construct fast, parallel devices to implement this technique 
for real-time applications. It thus fits our goal nicely here. 

Figure 2.2 depicts the conceptual diagram of our reinforcement learning-based object 
recognition system that addresses the parameter selection problem encountered in image 
segmentation task by using the recognition algorithm itself as part of the evaluation func- 
tion for image segmentation. Note that the reinforcement learning component employs a 
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particular reinforcement learning algorithm that will be described in the next section. Fig- 
ure 2.3 shows the main steps of the algorithm we use, where the algorithm terminates when 
either the number of iterations reaches a prespecified value (N) or the average matching 
confidence over entire training data (denoted by rr) has exceeded a given threshold, called 
Rth- Note that n denotes the number of images in the training set. In the event that the 
number of iterations has exceeded N, we will say that the object is not present in the image. 
Also for simplicity we assume that only one instance of the model is present in the image. 
Multiple instances of the model can be recognized by slight modification of the algorithm. 

2.3    Reinforcement Learning 

In this section we begin with a brief overview of the reinforcement learning technique. We 
then describe reinforcement learning algorithms applicable to our task and the modifications 
of these algorithms to effectively solve the problem identified in section 2.2.1. 

LOOP: 

1. rr = 0 (rr: average matching confidence) 
2. For each image i in the training set do 

(a) Segment image i using current segmentation parameters 
(b) Perform noise clean up 
(c) Get segmented regions (also called blobs or connected components) 
(d) Perform feature extraction for each blob to obtain token sets 
(e) Compute the matching of each token set against stored model and return 

the highest confidence level, r 
(f) rr = rr + r 

(g) Obtain new parameters for the segmentation algorithm using r as rein- 
forcement for the reinforcement learning algorithm 

UNTIL number of iterations is equal to N or rr/n > Rth 

Figure 2.3: Main Steps of the Reinforcement Learning-Based Object Recognition Algorithm. 

Reinforcement learning is an important machine learning paradigm. It is a framework 
for learning to make sequences of decisions in an environment [6]. It is distinct from super- 
vised learning, like the popular backpropagation algorithm, in that feedback it receives is 
evaluative instead of instructive. That is, for supervised learning the system is presented 
with the correct output for each input instance, while for reinforcement learning the system 
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produces a response that is then evaluated using a scalar indicating the appropriateness of 
the response. As an example, a checker playing computer program that uses the outcome of 
a game to improve its performance is a reinforcement learning system. Knowledge about an 
outcome is useful for evaluating the total system's performance, but it says nothing about 
which actions were instrumental for the ultimate win or loss. In general, reinforcement 
learning is more widely applicable than supervised learning since any supervised learning 
problem can be treated as a reinforcement learning problem. 

In the reinforcement learning framework, a learning system is given, at each time step, 
inputs describing its environment. The system then makes a decision based on these inputs, 
thereby causing the environment to deliver to the system a reinforcement. The value of this 
reinforcement depends on the environmental state, the system's decision, and possibly ran- 
dom disturbances. In general, reinforcement measuring the consequences of a decision can 
emerge at a multitude of times after a decision is made. A distinction can be made between 
associative and non-associative reinforcement learning. In the non-associative paradigm, 
reinforcement is the only information the system receives from its environment. Whereas, 
in the associative paradigm, the system receives input information that indicates the state 
of its environment as well as reinforcement. In such learning systems, a "state" is a unique 
representation of all previous inputs to a system. In computer vision, this state informa- 
tion corresponds to current input image. Our object recognition applications require us to 
take into account the changes appearing in the input images. The objective of the system 
is to select sequences of decisions to maximize the sum of future reinforcement (possibly 
discounted) over time. It is interesting to note that for a given state an associative rein- 
forcement learning problem becomes a non-associative learning problem. 

As noted above, a complication to reinforcement learning is the timing of reinforcement. 
In simple tasks, the system receives, after each decision, reinforcement indicating the good- 
ness of that decision. Immediate reinforcement occurs commonly in function optimization 
problems. In more complex tasks, however, reinforcement is often temporally delayed, oc- 
curring only after the execution of a sequence of decisions. Delayed reinforcement learning 
is important because in many problem domains, immediate reinforcement regarding the 
value of a decision may not always be available. For example, in object recognition, the 
goodness of segmentation is not known until the recognition decision has been made. De- 
layed reinforcement learning is attractive and can play an important role in computer vision 
[66]. Because delayed reinforcement learning does not concern us here, we do not discuss 
this subject further. 

In this paper, we instead concentrate on the immediate reinforcement learning paradigm, 
for it provides a simple, yet principled framework within which the main problems identified 
above can be properly addressed. It also serves as a stepping stone for better understanding 
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of the issues involved in computer vision that need to be addressed by delayed reinforcement 
learning [66]. A well-understood method in immediate reinforcement learning is the RE- 
INFORCE algorithm [93], a class of connectionist reinforcement learning algorithms, that 
performs stochastic hill-climbing, and which is the subject of our paper. 

2.3.1    Connectionist Reinforcement Learning 

The particular class of reinforcement learning algorithms employed in our object recognition 
system is the connectionist REINFORCE algorithm [93], where units in such a network 
(depicted by the picture on the left in Figure 2.4) are Bernoulli quasilinear units, in that 
the output of such a unit is either 0 or 1, determined stochastically using the Bernoulli 
distribution with parameter p = f(s), where / is the logistic function, 

/(s) = l/(l + exp(-5)) (2.1) 

and s = Yli wixi is the usual weighted summation of input values to that unit. For such a 
unit, p represents its probability of choosing 1 as its output value. The picture on the right 
in Figure 2.4 depicts the ith unit. 
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Figure 2.4: Left: Connectionist reinforcement learning system. Right: Bernoulli quasilinear unit. 

In the general reinforcement learning paradigm, the network generates an output pattern 
and the environment responds by providing the reinforcement r as its evaluation of that 
output pattern, which is then used to drive the weight changes according to the particular 
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reinforcement learning algorithm being used by the network. For the Bernoulli quasilinear 
units used in this research, the REINFORCE algorithm prescribes weight increments equal 
to 

Awij = a(r - b) (y; - pi)xj (2.2) 

where a is a positive learning rate, b serves as a reinforcement baseline, Xj is the input to 
each Bernoulli unit, j/2- is the output of the zth Bernoulli unit, and pi is an internal parameter 
to a Bernoulli random number generator (see equation 2.1). Note that i takes values from 
1 to n and j from 1 to m, where n and m are the number of the units in the network and 
the number of input features, respectively. 

It can be shown [93] that, regardless of how b is computed, whenever it does not depend 
on the immediately received reinforcement value r, and when r is sent to all the units in 
the network, such an algorithm satisfies 

£{AW|W} = aVwE{r\W} (2.3) 

where E denotes the expectation operator, W represents the weight matrix (n x (m+ 1), 
m + 1 because of m inputs plus a bias) of the network, and AW is the change of the 
weight matrix. A reinforcement learning algorithm satisfying (2.3) has the property that the 
algorithm statistically climbs the gradient of expected reinforcement in weight space. That 
is, the algorithm is guaranteed to converge to a local optimum. For adapting parameters 
of the segmentation algorithm, it means that the segmentation parameters change in the 
direction along which the expected matching confidence increases. The next two subsections 
describe the particular network and the algorithm used in this paper. 

2.3.2    The Team Architecture 

We use a very simple form of trial generating network in which all of the units are output 
units and there are no interconnections between them. This degenerate class of network 
corresponds to what is called a team of automata in the literature on stochastic learning 
automata [58]. We, therefore, call these networks as teams of Bernoulli quasilinear units. 
Figure 2.5 depicts the team network used here, which corresponds directly to the reinforce- 
ment learning component in Figure 2.2. Each segmentation parameter is represented by a 
set of Bernoulli quasilinear units and the output of each unit is binary as we have described 
earlier. 

For any Bernoulli quasilinear unit, the probability that it produces a 1 on any particular 
trial given the value of the weight matrix W is 

Pr {yi = 1| W} = Pi = f(Si) = T-p^r 
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Figure 2.5: Team of Bernoulli units for learning segmentation parameters. 

where s; = Ylj wijxj- Because all units pick their outputs independently, it follows that for 
such a team of Bernoulli quasilinear units the probability of any particular output vector 
y(t), corresponding to an instance of segmentation parameters, conditioned on the current 
value of the weight matrix W is given by 

Pr {y|W}=     n     Pf(l-Pi) 1-3K (2.4) 
i£{l,-,n} 

The weights Wij are adjusted according to the particular learning algorithm used. We 
note that when s; = 0 and hence pi = 0.5, the unit is equally likely to pick yi either 0 or 
1, while increasing s,- makes a 1 more likely. Adjusting the weights in a team of Bernoulli 
quasilinear units is thus tantamount to adjusting the probabilities (p,-'s) for individual units. 

Note that, except bias terms, there are no input connections in the team networks 
experimented in [94]. In contrast, the team network used in this paper does have input 
weights that play the role of long-term memory in associative learning tasks. 

2.3.3    The Team Algorithm 

The specific algorithm we used with the team architecture has the following form: At the tth 

time step, after generating output y(t) and receiving reinforcement r(t), i.e., the confidence 
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level indicating the matching result, increment each weight Wij by 

Awij(t) = a{r{t) - r(t - l))(yi(t) - fc(i - l))Xj - SWij(t) (2.5) 

where a, the learning rate, and 6, the weight decay rate, are parameters of the algorithm. 
The term (r(t) - r(t - 1)) is called the reinforcement factor and (y;(t) - y,-(i - 1)) the 
eligibility of the weight Wij [93]. Generally, the eligibility of a weight indicates the extent 
to which the activity at the input of the weight was connected in the past with unit output 
activity. Note that this algorithm is a variant of the one described in equation (2.2), where 
b is replaced by r and pi by y,-. 

r(t) is the exponentially weighted average, or trace, of prior reinforcement values 

r(t) = 7r(t - 1) + (1 - y)r(t) (2.6) 

with 7(0) = 0. The trace parameter j was set equal to 0.9 for all the experiments reported 
here. Similarly y~i(t) is an average of past values of y,- computed by the same exponential 
weighting scheme used for r. That is, 

&■(*) = 7ä(t-i) + (i-7)y.-(«)- (2-7) 

Note that equation (2.3) does not depend on the eligibility. However, empirical study shows 
superior performance with this form of eligibility for function optimization [94]. 

The use of weight decay is chosen as a simple heuristic method to force sustained explo- 
ration of the weight space since it was found that REINFORCE algorithms without weight 
decay always seemed to converge prematurely. It is argued in [94] that having weight decay 
(the second term Swij(t) in Equation (2.5)) is very closely related to having a nonzero mu- 
tation rate at a particular allele (feature value) in a genetic algorithm [33]. The size of the 
weight decay rate S was chosen to be 0.01 in all our experiments. Note that there are other 
ways to force sustained exploration. One possibility is to maximize a linear combination 
of system's entropy and reinforcement. We omit here the detailed analysis of the method 
except commenting that such a strategy seeks not only a particular region of the space 
having high reinforcement values, but also a variety of such high value regions. 

2.3.4    Implementation of the Algorithm 

A different training strategy from that described in Figure 2.3 was used in the experiments 
reported here. Instead of looping through every image in the training set, the training 
procedure samples images proportional to the level of matching confidence the current 
system achieves. That is, the lowerer the matching confidence the system gets on an image, 
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• LOOP: 

1. For each image i in the training set do 
(a) Compute matching confidence for image i: CONFIDi 

(b) m = MAXCON FID-CONFIDi 

(c) If Y^i ni is 0, then terminate. 
(d) proportiorii = ^=?^— 

2. rr = 0 (rr: average matching confidence) 
3. For k = 1 to n do 

(a) Sample image i according to proportiorii 

(b) Segment image i using current segmentation parameters 
(c) Perform noise clean up 

(d) Get segmented regions (also called blobs or connected components) 
(e) Perform feature extraction for each blob to obtain token sets 

(f) Compute the matching of each token set against stored model and return 
the highest confidence level, r 

(g) Obtain new parameters for the segmentation algorithm using r as rein- 
forcement for the team REINFORCE algorithm 

(h)  rr = rr + r 

• UNTIL number of iterations is equal to N or rr/n > Rth 

Figure 2.6: Main Steps of the Proportional Training Algorithm. 

the more likely the image will be sampled. In this way training is focused on those images 
having the lowest matching confidence, and thus faster performance improvement can be 
achieved. A similar technique is also adopted in [23]. Figure 2.6 shows the main steps 
of the proportional training algorithm, where MAXCONFID (=1 in this paper) is the 
maximum confidence level the system can achieve, i.e., when a perfect matching occurs, n 
is the number of images in the training set, and N and Rth are input parameters to the 
algorithm. 

2.4    Experimental Results 

This section describes experimental results evaluating the performance of our system on a 
variety of data, including two sets of color images, one of which is indoor and the other 
is outdoor, and a large set of simulated data.   The system has been implemented on a 
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SUN Ultra-1 workstation. It takes about 6 seconds to complete an iteration on a 120 
by 160 image, roughly 15% of which is taken by the Phoenix algorithm. Programming 
optimizations can reduce the expense per iteration further. 

The Phoenix algorithm [46] was chosen as the image segmentation component in our 
system because it is a well-known method for the segmentation of color images with a 
number of adjustable parameters. It has been the subject of several Ph.D. theses [59, 84]. 
Phoenix works by splitting regions using histogram for color features. Appendix A provides 
a brief overview of the algorithm. Note that any segmentation algorithm with adjustable 
parameters can be used in our approach. 

The Phoenix algorithm has a total of fourteen adjustable parameters. The four most 
critical ones that affect the overall results of the segmentation process are used in learning. 
These parameters are Hsmooth, Maxmin, Splitmin, and Height. Hsmooth is the width of 
the histogram smoothing window, where smoothing is performed with a uniformly weighted 
moving average. Maxmin defines the peak-to-valley height ratio threshold. Any interval 
whose peak height to higher shoulder ratio is less than this threshold is merged with the 
neighbor on the side of the higher shoulder. Splitmin defines the minimum size for a region 
to be automatically considered for splitting. This is an absolute value, not a percentage 
of the image area. Height is the minimum acceptable peak height as a percentage of the 
second highest peak. The team algorithm searches for a combination of these parameters 
that will give rise to a segmentation from which the best recognition can be achieved. The 
ranges for each of these parameters are the same as those used in [12]. Table 2.1 shows 
sample ranges for each of these parameters. The resulting search space is about one million 
sample points. 

Table 2.1: Sample ranges for selected Phoenix parameters. 

Parameter Sampling Formula Test Range 

Hsmooth: 
hsindex G [0 : 31] 

hsmooth=l + 2 * hsindex 1-63 

Maxmin: 
mmindex G [0 : 31] 

ep=ln(100) + 0.05 * mmindex 
maxmin = exp(ep) + 0.5 

100 - 471 

Splitmin: 
smindex G [0 : 31] 

splitmin=9 + 2 * smindex 9-71 

Height: 
htindex G [0 : 31] 

height=l + 2 * htindex 1-63 

Each of the Phoenix parameters is represented using 5 bit Gray code that has the ad- 
vantage over simple binary code in that only one bit changes between representations of 
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two consecutive numbers. One reason for using the binary representation is its usefulness 
as a model of certain types of distributed adaptive decision-making [93]. Another reason is 
that it offers a combinatorially advantageous way of approaching learning problems having 
a large search space. While the same task could be learned in the original parameter space, 
for many types of problems, including image segmentation, the binary representation can be 
expected to learn much faster. Since there are 4 parameters, we have a total of 20 Bernoulli 
quasilinear units and each parameter corresponds to the outputs of 5 units. 

The feature extraction consists of finding polygon approximation tokens for each of the 
regions obtained after image segmentation. The polygon approximation is obtained using 
a split and merge technique [15] that has a fixed set of parameters. 

Object recognition employs a cluster-structure matching algorithm [15] that is based on 
the clustering of translational and rotational transformations between the object and the 
model for recognizing 2-D and 3-D objects. A breif description of the algorithm is given 
in Appendix B. The algorithm takes as input two sets of tokens, one of which represents 
the stored model and the other represents the input region to be recognized. It then 
performs topological matching between the two token sets and computes a real number 
that indicates the confidence level of the matching process. This confidence level is then 
used as a reinforcement signal to drive the team algorithm. 

It is important to note that, in the current implementation of the system, the cluster- 
structure matching algorithm does not have the knowledge of actual object location in the 
image. It simply attempts to match the stored model against the polygonal approximation 
of each blob in the segmented image whose size is at least 80% of the size of the model, and 
at the same time does not exceed it by more than 20%. The confidence level returned is 
the highest value ever obtained during matching. 

It is worth pointing out that, during learning, the weights are updated after each presen- 
tation of an input image. This is in direct analogy to the typical weight update procedure 
in connectionist networks where weights are updated according to the stochastic gradient 
or incremental procedure instead of the total gradient rule [47]. That is, updates take place 
after each presentation of a single exam pier without averaging over the whole training set. 
Both empirical and theoretical studies show that the stochastic gradient rule converges sig- 
nificantly faster than the total gradient rule, especially when training set contains redundant 
information. 

Parameters (a, 7, and 6) used in reinforcement learning are determined empirically, and 
they are kept constant for all images. It is interesting to note that in theory the convergence 
of the algorithm to a local optimum does not depend on 7 and S. In practice, however, 
these learning parameters do affect the speed of convergence, as shown by various empirical 
studies conducted by several researchers [88, 93, 94], including us.  Likewise, a has to be 
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chosen sufficiently small to prevent oscillation and ensure convergence. The experimental 
tests performed by us showed that once the algorithm has achieved convergence many of 
these parameter values give rise to good segmentation performance, as verified by us visually. 
The initial parameter values for the Phoenix algorithm are chosen at random. We expect, 
however, that the good starting values of the segmentation parameters affect the convergence 
rate. Finally, as a comparison, the segmentation results with the Phoenix algorithm using 
default parameters [46] are also obtained for feature extraction and recognition on the same 
tasks. 

2.4.1    Results on Indoor Images 

HpfiffM 

:$PP?? H mm 

(a) (b) (c) 

sUt'^i&i^H 

IIP %g§pllfl 

(g) 00 (i) 

Ü) (k) (1) 

Figure 2.7: Twelve color images having simple geometric objects. 
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The first segmentation task whose experimental results we report here is a sequence of 
indoor color images (160 by 120 pixels) having simple geometric objects with varying lighting 
and motion conditions. These images are shown in Figure 2.7, where, from left to right, 
images are moving away from the camera, and within each column, lighting conditions 
deteriorate from top to bottom. The training set consists of the images 2.7(c), (h), (k), 
and (1) (randomly selected), whereas the testing data come from the rest of the images (8 
images). The objective of the task is to find a set of Phoenix's parameters that give rise to a 
segmentation of the input image that, after appropriate feature extraction, will result in the 
recognition of the triangular object. The model of the triangular object is represented by a 
polygonal approximation of its shape. The threshold for matching confidence in this case was 
set to 0.8. The learning rate parameter a was set to 0.008 in all the experiments. Note that, 
unlike previous work on image segmentation, the criteria measuring image segmentation 
quality here are completely determined by the matching algorithm itself. 

Each unit in the team network has a total of 8 input weights. In the first experiment 
each of the input weights takes an average grey value of input on a 60 by 40 neighborhood 
on the input image plane of 120 by 160 pixels. This input image is the luminance image of 
the corresponding color image. Note that in this experiment the average is normalized to lie 
between -1 and 1. For weights that are adjacent in a unit, their receptive fields are at least 
40 pixels apart in the input image. Thus, the input image is undersampled, which in turn 
greatly reduces the number of weights in the network. The motivation is that variations in 
lighting need not be adapted with high resolution. 

In the second experiment each input image is projected onto the subspace spanned by 
the eight eigenvectors corresponding to eight largest eigen values of the original (luminance) 
image vector space (120 by 160 pixels). More specifically, the sample mean vector, /x, is 
computed as // = (1/n) YA=I 

xi> where n is the number of sample vectors (in this paper n 
equals 12) and x denotes mxl column vectors of input images. Note that here m equals 
19200. A centered input matrix X is constructed according to 

X = (xi - n, x2 - n, ■ ■ •, xn - //). 

Then the sample covariance matrix is obtained 

C = -^-XX' 
n - 1 

and its eigensystem is computed, yielding eigenvalues A,-, i = 1, 2, • • •, m, of C in descending 
order so that Xj > Xj+1 for j = 1, 2, • • •, m - 1. Let A be a 8 X m matrix whose rows are 
formed from the eigenvectors of C, ordered so that the first row of A is the eigenvector 
corresponding to the largest eigenvalue, and the last row is the eigenvector corresponding 
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to the 8th largest eigenvalue. Then new inputs are computed according to z = Ax where 
z denotes 8x1 column vectors. These inputs are normalized to lie between -1 and 1. Our 
goal is to see which method can offer better performance. It turns out that the second 
method performed slightly better than the first one, as can be seen below (Figures 2.8 and 
2.9). Note that, unless stated otherwise, all the figures in this section are obtained under 
the condition that the system takes inputs from the subspace spanned by the first 8 major 
axes corresponding to the eight largest eigenvalues of C. 

Figure 2.8 shows the segmentation performance (both training and testing) of the Phoenix 
algorithm with learned parameters on the images shown in Figure 2.7. The training results 
in Figure 2.8 are obtained after a mean value (over 5 runs) of 250 passes through the training 
data. Figure 2.9 shows the average confidence (over 5 runs) received by the two methods 
(eigen-input and mean-input) over time during training (hillclimber results are explained 
below under Computational Efficiency in Section 4.4). Each run consists of a sequence 
of trials until the average confidence level has exceeded 0.8. The threshold (0.8) serves 
our purpose well here since it is sufficient to demonstrate the effect of learning for object 
recognition. 

Figure 2.10 shows the trajectory of each of the four Hsmooth, Maxrnin, Splitmin, and 
Height parameters during training in a typical run on a particular image (in this case it is 
the image (c) of Figure 2.7). Note that no attempt was made to determine if the set of 
parameters giving rise to the final recognition is unique. 

When the segmentation parameters obtained after training were applied to the images in 
the testing set, recognition results for all the images, but 2.7(f), are acceptable. However, 
if we include image 2.7(f) in the training set and allow learning to continue, experiments 
have been performed that show that successful recognition can be achieved for all testing 
images in much less time (less than 50%) compared to the time taken for training on the 
original training data. 

In comparison, the Phoenix algorithm with default parameter setting was also run on 
the same images. Figure 2.11 shows the samples of the segmentation performance of the 
Phoenix algorithm with default parameters on the images in the first row of Figure 2.7, i.e, 
images 2.7((a)), 2.7(b), and 2.7 (c). These default parameters were obtained after extensive 
tests [46]. This default parameter setting resulted in a total matching failure. 

2.4.2    Results on Outdoor Images 

The second segmentation task involves a sequence of 10 outdoor color images obtained 
under varying environmental conditions, two of which are shown in Figures 2.12(a) and 
(b). These images are collected approximately every 15 minutes over approximately 2 and 
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Figure 2.8: Segmentation performance of the Phoenix algorithm with learned parameters. 

1/2 hour period [12]. The images exhibit varying shadow and reflection on the car as the 
position of the sun changed and clouds came in and out the field of view of the camera that 
had auto iris adjustment turned on. The overall goal is to recognize the car in the image. 
The original images are digitized at 480 by 480 pixels in size and are then subsampled to 
produce 120 by 120 pixel images. Five of these odd-numbered images are used as training 
data and five even-numbered images as testing data. 

Similar to the team network for the indoor images, each unit here has a total of 9 input 
weights, each of which takes an average gray value of input on a 40 by 40 neighborhood on 
the input image plane of 120 by 120 pixels. These averages are normalized to lie between 
-1 and 1. Polygonal approximation of the car shown in Figure 2.12(c) is used as the model 
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Figure 2.9: Average confidence received by the three methods over time during training. 

in the cluster-structure matching algorithm.   It was extracted manually in an interactive 
session from the first frame in the sequence. 

Figure 2.13 shows a sequence of segmentations for frame 1 with Phoenix's parameters 
sampled at iterations 20, 30, 40, 50, 60, and 74 in a particular run during training, and 
corresponding parameter values at each of these intervals are shown in Table 2.2. Note that 

Table 2.2: Changes of parameter values during training. 

Iteration Hsmooth Maxmin Splitmin Height 

20 53 135 55 58 

30 17 142 39 42 

40 21 105 43 24 

50 1 165 51 42 

60 1 135 19 62 

74 1 300 55 64 

Figure 2.13(f) shows the final segmentation result when the highest confidence matching 
has been achieved. The threshold for acceptable matching confidence is set at 80% because 
of the low resolution of the real data. 

Figures 2.14(a) and (b) show the Phoenix segmentation performance on two testing 
images (frames 2 and 4) with learned parameters obtained after training on frames 1,3,5, 
7 and 9.  For frame 2 the matching is acceptable.   However, for frame 4 the result is not 
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Figure 2.10: Trajectories for a particular run for each of the four parameters Hsmooth, Maxmin, 
Splitmin, and Height during training on a particular image (Figure 2.7(g)). 

acceptable and learning is to be performed similar to the indoor examples for the adaptation 
of parameters. 

Finally, Figures 2.14(c) and (d) show the samples of performance of Phoenix with default 
parameters on the outdoor color images shown in Figure 2.12. Note that these segmentation 
results are totally unacceptable. 

2.4.3    Results on a Large Simulated Data Set 

The simulated data experiment allows us to examine how the system will behave with a 
large data set. We assume the function, F, representing segmentation, feature extraction 
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(a) (b) (c) 

Figure 2.11: Samples of segmentation performance of the Phoenix algorithm with default param- 
eters on indoor color images (Figures, 2.7(a), 2.7(b) and 2.7(c), respectively). 

(a) (b) (c) 

Figure 2.12: (a) and (b): Samples of outdoor color images with varying environmental conditions, 
(c): Polygon approximation of the car used in the matching algorithm. 

and model matching components shown in Figure 2.2, is given by 

Fp(x) = ]TF£(x), (2.8) 

and 

fc=o 

(fc+l)n/4 

F£(x) = 2.5n     IJ     (I-I^-WD- (2-9) 
i=kn/4+l 

where p G {0, l}n is a constant. F is a mapping from the n-dimensional hypercube {0, l}n 

into the real numbers, where n = 20. Each point x in its domain is an n-dimensional bit 

vector. 

The function Fp(x) is computed as follows:   Divide the 20 bits into four equal-sized 
groups. For each group compute a score which is 2.5n if all the bits in that group are the 
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(a) (b) (c) 

Figure 2.13: Sequence of segmentations of the first frame during training. 

same as those in p and is 0 otherwise. Then Fp(x) is the sum of these four scores. This 
function has a global maximum of 200 at p. It also has very large plateaus over which the 
function is constant. These plateaus will confound any myopic hillclimber. 

In terms of the vision system described in the paper, x corresponds to the encoding 
of segmentation parameters and Fp represents in abstract terms the matching confidence 
resulting from applying Phoenix with x to a given input image p. 

Note that since the precise nature of the function (eq. 2.8) to be optimized is known, we 

can more reliably predict the strengths and limitations of the system. In this experiment, 
p is randomly generated uniformly from {0, l}n. Then, 2000 data points whose Hamming 
distance to p is at most 4 are randomly generated from a distribution such that 80% of 
the data points are produced by perturbing the first 10 bits of p, 10% by the first 15 bits, 
and the rest 10% by entire 20 bits. Conceptually, each of these data points may be viewed 
to simulate the segmentation parameter values for an image that will give rise to the best 
possible recognition result for the image. 

Out of these 2000 data points 500 are randomly selected as training data. The remaining 
1500 data points as testing data. As in the real data experiments described above (Section 
4.1), 15 normalized eigen features are computed to represent these data. Thus, there are 
20 Bernoulli units, each of which has 15 input lines that encode a particular pattern to be 
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(a) (b) 

(d) 

Figure 2.14: (a) and (b): Segmentation performance of the Phoenix algorithm on two testing images 
(frames 2 and 4) with learned parameters, (c) and (d): Samples of segmentation performance of the 
Phoenix algorithm with default parameters on the two images shown in Figure 2.12. 

searched for. 

Training consists of repeated sweeps through the training set until the average value 
of F has reached 190, which is about 95% of the optimal value of 200 (see eq. 2.8). An 
added benefit is that it prevents the system from overfitting the data, resulting in better 
generalization. The result shows that after about 5000 sweeps through the training data, the 
system achieved an average value of 180 over 90% of the testing data and an average value 
of 170 over the entire testing data. Further examination revealed that the majority of those 
testing data whose value is less than 180 come from 20 bit perturbation to p. These data 
were least represented, and therefore, resulted in relatively not so good performance. This 
generalization characteristic is typical in connectionist networks. These results demonstrate 
that the algorithm can be expected to perform reasonably well on large data sets in large 

problem domains. 
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2.4.4    Computational Efficiency 

The computational efficiency of the system should be evaluated against other systems hav- 
ing similar operating characteristics. To the best of our knowledge, however, there is no 
similar system that directly uses recognition result as a feedback to drive learning for image 
segmentation. Thus, as a comparison we applied a stochastic hillclimber to the same indoor 
images used for the experiments described in the above (Section 4.1). We first applied the 
K-Means algorithm [52] to the eigen features to determine K centers, where K = 4 in this 
experiment. Then four images that are closest to the four centers are used as training data. 
There are, therefore, four sets of Phoenix parameters, each of which is associated with a 
particular center. For a given image, generalization is made by searching for the nearest 
cluster center and then applying the set of Phoenix parameters associated with the cluster. 

In the beginning, the hillclimber occasinally moves along directions that are not very 
promising. However, as search continues the probability of downhill movement is reduced. 
The annealing schedule used in this experiment is an inverse function of the number of 
iterations. It is improtant to note that if each dimension of the input space at every iteration 
has to be examined to estimate the gradient, the amount of computation required would be 
prohibitive. Instead, we randomly perturb 3 dimensions (where each dimension is equally 
likely to be selected) to move up the gradient. Thus, the amount of computation is three 
times ofthat required by the reinforcement learning system at each iteration. The decision 
of where to look next critically influences the computational efficiency of the optimization 
process. Like the reinforcement learning method, however, a priori gradient information is 
not available. It has to be estimated by sampling the search space. 

A comparison of the results shown in Figure 2.9 clearly demonstrates that the reinforce- 
ment learning system performed significantly better than the stochastic hillclimber, despite 
the fact that it took more computation time at every iteration. 

2.5    Conclusions 

The key contribution of the paper is the general framework for the usage of reinforcement 
learning in a model-based object recognition system. Our investigation into reinforcement 
learning-based object recognition shows convincingly that a robust and adaptive system can 
be developed that automatically determines the criteria for segmentation of the input images 
and selects useful features that result in a system with high recognition accuracy when 
applied to new unseen images. Note that the performance of any learning-based computer 
vision system depends on the vision algorithms that are used, e.g., the recursive region- 
splitting Phoenix algorithm used in this paper for the segmentation of color images. Future 
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research will address extensions for enlarging the scope of the approach to encompass closed- 
loop 3-D object recognition and problems in active vision where reinforcement learning 
could be extremely useful. Furthermore, incorporation of "delayed" reinforcement learning 
could adequately address the inherent multi-level nature of vision systems [66]. It is to be 
noted that in this paper we have used a parameter optimizing methodology for performance 
improvement. An alternate approach for performance improvement by input adaptation has 
been given by Zheng and Bhanu [97]. 

2.6    APPENDIX A: The Phoenix Segmentation Algorithm 

The Phoenix image segmentation algorithm is based on a recursive region splitting technique 
[46]. It uses information from the histograms of the red, green, and blue image components 
to split regions in the image into smaller sub-regions on the basis of a peak/valley analysis 
of each histogram. An input image typically consists of red, green, and blue image planes, 
although monochrome images, texture planes, and other pixel-oriented data may also be 
used. Each plane is called a feature or feature plane. 

Figure 2.15 shows a conceptual description of the Phoenix segmentation process. It 
begins with the entire image as a single region. It then fetches this region and attempts to 
segment it using histogram and spatial analyses. If it succeeds, the program fetches each of 
the new regions in turn and attempts to segment them. The process terminates when no 
region can be further segmented. 

The histogram analysis phase computes a histogram for each feature plane, analyzes 
it and and selects thresholds or histogram cutpoints that are likely to identify significant 
homogeneous regions in the image. A set of thresholds for one feature is called an interval 
set. During the analysis, a histogram is first smoothed with an unweighted window average, 
where the window width is hsmooth. It is then broken into intervals such that each contains 
a peak and two "shoulders." A series of heuristics is applied to eliminate noise peaks. 
When an interval is removed, it is merged with the neighbor sharing the higher of its two 
shoulders. Splitmin is the minimum area for a region to be automatically considered for 
splitting. 

Two tests determine if an interval should be retained. First, the ratio of peak height to 
the height of its higher shoulder must be greater than or equal to the maxmin threshold. 
Second, the interval area must be larger than an absolute threshold and the relative area, 
percent of the total histogram area. The second highest peak can now be found, and peaks 
lower than the height percent of this peak are merged. The lowest valley is then determined, 
and any interval whose right shoulder is higher than absmin (Phoenix's parameter) times 
this valley is merged with its right neighbor. Finally, only intsmax (Phoenix's parameter) 

35 



' r B^^ST^ Fetch Region KJT*..-S 
' 1 

Rejected Region 

Histogram Analysis 

1 1 
No Acceptable Histograms 

Spatial Analysis 

' 1 
No Acceptable Features 

Split Region 

1 
■ 

Figure 2.15: Conceptual diagram of the Phoenix segmentation algorithm. 

intervals are retained by repeatedly merging intervals with low peak-to-shoulder ratio. 

The spatial analysis selects the most promising interval sets, thresholds the corresponding 
feature planes, and extracts connected components for spatial evaluation. The feature and 
the interval set providing the best segmentation (the least noise area) are accepted as the 
segmentation feature and the thresholds. 

The histogram cutpoints are now applied to the feature plane as intensity thresholds 
and connected components are extracted. After each feature has been evaluated, the one 
producing the least total noise area is accepted as the segmentation feature. If no suitable 
feature is found, the original region is declared terminal. Otherwise the valid patches, 
merged with the noise patches, are converted to new regions and added to the segmentation 
record. In either case, a new segmentation pass is scheduled. For additional details, see 
[46]. 
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2.7    APPENDIX B: The Cluster-Structure Algorithm for 
Matching 

The cluster-structure algorithm can be divided into the following main steps: (1) Determine 
Disparity Matrix, (2) Initial Clustering, (3) Sequencing, (4) Final Clustering, (5) Transform 
Computation. The algorithm first computes the disparity matrix. It determines the segment 
length of each line and the angles between successive lines from the set of vertices for the 
model and the image input to the program. At this point, every segment in the model will 
be compared against every segment in the image. If segment lengths and successor angles 
are compatible, the algorithm computes the rotational and translational disparity between 
pairs of segments. These values are stored in the disparity matrix and are indexed by the 
segment numbers in the model and the image. The algorithm continues until all segments 
have been compared. It then computes the range of rotational and translational values 
present in the matrix, and normalizes them over their appropriate range. 

The initial clustering determines clusters from the normalized values in the disparity 
matrix. At each step, the program clusters all of the samples, recomputes the new cluster 
centers, and continues until none of the cluster centers change their positions. The program 
then selects the cluster having the largest number of samples. Also selected are the clusters 
that are within 20% of the largest one. Each cluster is considered separately and the final 
transform comes from the cluster that yields the highest confidence level. 

The sequencing step uses the samples in the current cluster to find all sequences in the 
samples. This provides the critical structural information. Samples that are not placed 
in any sequence are discarded. The program also removes sequences that have a segment 
count of less than three (three segments comprise the basic local shape structure). It then 
computes the rotational and translation averages of each sequence that has been located. 

Using the sequences and the sequence averages, the final clustering step clusters these 
values to find those sequences that lead to the same rotational and translational results. 
This is achieved by using the iterative technique of clustering, evaluating, clustering, etc. 
The program then selects the cluster that contains the largest number of sequences and 
passes this cluster to the final step. 

The final step of the algorithm computes the confidence level of the transformation 
determined by each cluster. The cluster having the highest confidence level is selected as 
the final transformation cluster. It assembles the set of matched segments in the sequences in 
this cluster. The final output of the program is the rotation and the vertical and horizontal 
translation necessary to locate the model within the image. The program also produces 
a confidence level indicating the likelihood that the final matching is correct. For further 
details, see [15]. 
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Chapter 3 

Adaptive Image Segmentation and 
Feature Extraction 

Object recognition is a multi-level process requiring a sequence of algorithms at low, inter- 
mediate and high levels. Generally, such systems are open loop with no feedback between 
levels and assuring their robustness is a key challenge in computer vision and pattern recog- 
nition research. A robust closed-loop system based on "delayed" reinforcement learning is 
introduced in this paper. The parameters of a multi-level system employed for model-based 
object recognition are learned. The method improves recognition results over time by using 
the output at the highest level as feedback for the learning system. It has been experimen- 
tally validated by learning the parameters of image segmentation and feature extraction 
and thereby recognizing 2-D objects. The approach systematically controls feedback in a 
multi-level vision system and shows promise in approaching a long-standing problem in the 
field of computer vision and pattern recognition. 

3.1     Introduction 

Most vision systems use a sequence of algorithms that operate at various stages of abstrac- 
tion to perform a given task, such as object recognition. In earlier work that combines 
learning and vision [64], the inherent multi-stage nature of vision systems has not been ad- 
dressed adequately. In this paper an approach that takes the output of the final stage and 
uses it as a feedback in a reinforcement learning framework to influence the performance 
of the lower stages of vision algorithms is presented. The overall system performance is 
improved over time with this method. 
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Figure 3.1 illustrates the typical approach for model-based object recognition, which is 
often unidirectional and without feedback. For those systems that do Use feedback [90, 19], 
there is no learning from experience to improve future recognition performance, which is the 
subject of this correspondence. The segmentation and feature extraction modules shown 
in Figure 1 use default parameters that are usually obtained by the system designer by 
following a trial and error approach. However, the designer cannot anticipate all possible 
inputs to the algorithms; the content of the three-dimensional scene and the environmental 
conditions are not known a priori. The simultaneous adjustment of even a few system 
parameters is time-consuming and difficult and has yet to be solved satisfactorily for multi- 
stage systems. As a result, the approach shown in Fig. 3.1 is inadequate for real-world 
applications. The key to the performance improvement of a multi-stage object recognition 
system over time is the automatic adjustment of parameters of various algorithms used in 
the system. 

3.2    Our Approach 

If it is assumed that the model matching produces a confidence measure indicating the 
closeness of the selected features to the model, then it is natural to use this confidence as 
feedback to influence the system's performance for segmentation and feature extraction. 
The broad goal of such a scheme is to try to find, for any given image, a set of parameters 
for image segmentation and feature extraction in ways that minimize recognition errors. 
Applying a reinforcement learning algorithm to the parameters can be viewed as a means 
of doing just this when the matching confidence is used as reinforcement. Figure 3.2 shows 
a closed-loop reinforcement learning-based system to achieve this goal. 

In contrast, it would be difficult, if not impossible, for a conventional search method to 
accomplish the same task. Simply, there are no well-defined evaluation functions at each of 
the stages for a method to search for. Furthermore, if a method uses the confidence of model- 
matching for evaluation, then it is not clear how the process should proceed in a systematic 
way. Finally, at each stage, any such method will have to delay its decision as to where to 
search next until the confidence of model-matching becomes available. However, this need 
not be the case for the approach presented in this paper. From a computational standpoint, 
therefore, our approach is more attractive since the computation can be distributed over 
time more evenly, which will reduce overall demands on the memory and speed. 

The original contribution of this work is to provide an incremental method based on 
"delayed" reinforcement learning for inducing a general mapping from images to parameter 
settings in a multi-stage model-based object recognition system. A theoretical model is 
provided and its efficacy is validated using real-world data. 
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Figure 3.1: Conventional system for object recognition. 
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Figure 3.2: Reinforcement learning-based multi-stage system for object recognition. 

3.3    Reinforcement Learning 

Reinforcement learning studies computational approaches to learning from rewards and 
punishments (called reinforcement). It is about learning optimal control in Markov decision 
problems. In this paper, reinforcement corresponds to the confidence measure generated 
by the model matching (see Fig. 3.2). Several factors complicate reinforcement learning, 
the most important of which is the timing of reinforcement. Reinforcement becomes avail- 
able after each action in simple tasks. In most complex tasks, however, reinforcement is 
often temporally delayed. For example, in the object recognition system, the goodness of 
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segmentation and feature extraction may not be reliably known until model matching has 
been performed. 

One set of effective methods for delayed reinforcement learning is given by the theory 
of dynamic programming. Given a Markov decision problem, these methods involve first 
determining the "optimal action-value function," the Q function [92], that assigns to each 
state-action pair a value measuring the average total (discounted) reward obtained when a 
particular action is taken in the given state and the optimal policy is followed thereafter. 
That is, using the notation that x denotes the current state, a the current action, r the 
resulting immediate reward, and y the resulting next state from taking a in a;, then 

Q(x,a) = R(x,a) + 7^2Pxy(a)V(y) (3.1) 
y 

where R(x, a) = E{r\x, a} with Edenoting the expectation operator, V(x) = maxa Q(x, a), 
Pxy(a) is the probability of making a state transition from x to y as a result of applying 
action a, and 7 € [0,1) is a discount factor. Note that once the Q function is known it 
is straightforward to determine the optimal policy. Note also that both x and a can be 
vectors. 

The particular method employed in this work for learning the Q function is the Q(A) 
algorithm [67], where A G [0,1]. Although a detailed analysis of the Q(A) algorithm is be- 
yond the scope of the paper, a brief explanation follows. Like Q learning [92], Q(A) learning 
works by maintaining an estimate Q of the Q function and updating it so that equation 
(3.1) comes to be more nearly satisfied for each state-action pair encountered. In Q(A) 
learning, however, the estimate Q{xt, at) is regressed not just toward the estimate V(xt+1), 
which Q learning does, but to a weighted mixture of the estimates V(xt+i), V^t+s), • • •, 
V(xt+k), etc., up to and including the final outcome, where the weightings are proportional 
to Afc_1. That is, A controls the proportion in which future estimates are combined into 
overall targets. By shifting the estimate for Q(x,a) toward a weighted mixture of down- 
stream targets, Q(A) learning not only achieves better computational efficiency, but also 
enables, under appropriate conditions, the elimination of the effect of initial bias. Note that 
it is not difficult to see that when A = 0, Q(A) learning reduces to simple Q learning. The 
typical choice for the A value is somewhere between 0 and 1. 

To implement the Q(A) learning algorithm, a memory mechanism, called the eligibility 
trace, is used. The eligibility trace assigns a value to each experienced state-action pair with 
more recent ones having higher values. If Tr (x, a) denotes the eligibility trace of state-action 
pair (x, a), then the Q(A) learning algorithm can be described in Figure 3.3. 
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1. Q(x, a) = 0 and Tr(x, a) = 0 for all x and a. t = 0 

2.  Do Forever: 

(a) xt <— the current state 

(b) Choose an action at that maximizes Q(xt,at) over all at 

(c) Carry out action at in the world. Let the short term reward be rt, and the 
new state be ajt+i 

(d)  e't -rt + fVt(xt+i)-Qt{xt,at) , et = n + fVt (xt+i) - - Vt{xt) 

(e) For each state-action pair (x, a) do 

• Tr{x, a) = */\Tr(x, a) 

• Qt+i(x,a) = Qt{x,a) + aTr(x ,a)et 

(f)  Qt+i(xt,at) = Qt+i(xt,at) + ae't 

(g) Tr{xt,at) = Tr{xt,at) + l 

(h) t = t + l 

Figure 3.3: The Q(A)-learning algorithm. 

3.4     Reinforcement Learning for Object Recognition 

In the multi-stage system for model-based object recognition described in Figure 3.2, there 
are unknown parameters for both the segmentation and feature extraction modules. The 
segmentation module is based on the Phoenix algorithm [46, 59]. Phoenix was chosen 
because it is a well-known method for the segmentation of color images with a number of 
adjustable parameters. Phoenix uses region splitting based on histograms of color features 
and is critically dependent on system parameters Hsmooth and Maxmin. 

Hsmooth'is the width of the histogram smoothing window, where smoothing is performed 
with a uniformly weighted moving average. Maxmin defines the peak-to-valley height ratio 
threshold. Any interval whose peak height to higher shoulder ratio is less than this threshold 
is merged with the neighbor on the side of the higher shoulder.   The algorithm searches 
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for a combination of these parameters that will give rise to a segmentation from which 
the best recognition can be achieved. The ranges for each of the two parameters are: 
hsmooth = 1 + 2 * hsindex and maxmin = exp(ln(100) + 0.05 * mmindex) + 0.5, where 
hsindex,mmindex G [0 : 31]. The resulting search space is about one thousand sample 
points. 

The feature extraction module finds polygon approximation for borders of each of the 
regions obtained after image segmentation. It is based on a split and merge technique 
that is critically dependent on neighborhood parameters, called Ml and M2. They affect 
maximum curvature estimations [62]. For the purpose of this paper only M2 is subject to 
adaptation. 

Our object recognition process employs a cluster-structure matching algorithm [15] that 
is based on the clustering of translational and rotational transformations between the object 
and the model for recognizing 2-D and 3-D objects. The algorithm takes as input two sets of 
tokens, one of which represents the stored model and the other represents the input region 
to be recognized. It then performs topological matching between the two token sets. It 
computes, based on the number of model segments that match the segments in the data, 
a real number that indicates the confidence level of the matching process. This confidence 
level is then used as a reinforcement signal to drive the algorithm. 

The objective of the system is to autonomously find a set of segmentation and feature 
extraction parameters that achieves the maximum matching confidence for a given input 
image. Our model-based recognition system is a multi-stage decision process where the 
parameters Hsmooth and Maxmin are at the first stage of the process and the parameter M2 
is at the second stage. The goodness of a particular decision such as selecting a combination 
of the segmentation parameters is not known until the model matching has been performed. 
To achieve the objective, therefore, the Q(A) learning algorithm with the confidence of model 
matching as reinforcement is used to adjust the parameters at both the first stage and the 
second stage. 

Let i be an input image to the segmentation module, ä be an instance of segmentation 
parameters, and b be an instance of feature extraction parameters. (Note that in this paper, 
b is simply a sealer.) Also, let is be the segmented image resulting from applying Phoenix 
with ä as its parameter values to image i. Then according to the Q(A)-learning algorithm 
Q{i,a) measures how good the instance a is when Phoenix applied to image i. Likewise, 
Q(is,b) measures the quality of extracted features when the feature extraction algorithm 
with b as its parameter values is applied to the segmented image is. When the Q(A) learning 
algorithm is applied to the parameters the value of Q(i, a) will be corrected to look more like 
the value of the segmented image, V(is) = m&xbQ(is, b), which will in turn be estimated 
according to the matching confidence. 
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1. Initialization: Q(x,p) <— 0 for all x,p, where x is either an image or a segmented 
image and p is either an instance of segmentation parameters ä or feature extrac- 
tion parameters 6. 

2. LOOP: 

• For each image i in the training set do 

(a) Segment image i with segmentation parameters ö = (ai, a2, • ■ •, an) 
recommended by e-greedy policy; i, is the resulting segmented image. 

(b) Update Q(i,ä) according to Q(A) learning with e' = fV(is) — Q(i, ä), 
e = yV{i.)-V(i) 

(c) Perform feature extraction with feature extraction parameters 6 = 
(6i, 62, • • •, bn) recommended by e-greedy policy from the segmented 
image i,. 

(d) Compute the matching of each connected component (which is close 
to the size of the current model) against stored model and return the 
highest confidence level r 

(e) Update Q_(i,,b) and Q(i,ä) according to Q(A) learning with e' = 
r - Q(i,,b) and e = r - V{is) 

3. UNTIL terminating condition 

Figure 3.4: Main steps of the delayed reinforcement learning algorithm for parameter adjustment 
for segmentation and feature extraction. 

Figure 3.4 shows the main steps of the algorithm described, where e-greedy policy is 
a greedy policy that selects random actions for e fraction of time. Although there is no 
strong theoretical fundation, this exploration strategy works well in practice. The algorithm 
terminates when either the number of iterations has exceeded a prespecified value or the 
recognition confidence level has reached a given threshold. 

Note that in general there may be no model object, or there can be multiple instances 
of one model object or several different model objects in the image. If the goal is to 
recognize multiple objects, it might be preferable to use an average of the confidence levels 
resulting from each model matching. The desired result is that parameters are chosen 
more judiciously so as to optimize the average confidence measure that rewards parameters 
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accommodating differences in characteristics between regions in the image. There are other 
possibilities as well. For example, one might design a method whose operating conditions 
are amended to these differences to achieve optimal performance for segmentation, feature 
extraction, and model matching. Such a scheme would localize its computation by ways of 
local segmentation to meet each individual requirement. We are currently pursuing these 
ideas [8]. In this paper, however, we are concerned with simple situations where only one 
model object is present in the image. Thus, the maximum confidence level suffices. 

3.5    Experimental Validation 

There are several representation schemes for the Q function in the reinforcement learning 
paradigm. Since the goal here is to demonstrate the effect of learning for multi-stage 
recognition, we have used a look-up table based representation. 

The two dimensions of the look-up table are the following: (1) input or segmented 
(feature-extracted) image, (2) action represented by a particular combination of system 
parameters. The "activity" trace Tr is similarly indexed. All the table entries are initialized 
to zero, which means that each combination of the parameter values can be selected for 
evaluation with equal probability in the beginning. The focus of the experiments is to 
demonstrate the feasibility of using learning for multi-stage recognition. Also, j = 0.95, A 
= 0.3, and e = 0.1 for all the experiments reported here. 

Ar^r» 

(a) (b) 

Figure 3.5:  A sample outdoor color image (Frame 1 of a 20 frame sequence) and (b) polygonal 
model of the car. 

Figure 3.5(a) shows a sample of a sequence of outdoor color images (120 X 120) obtained 
under varying environmental conditions. These images were collected approximately every 
15 minutes over a ~ 2 and 1/2 hour period [12]. The images exhibit varying shadow and 
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Figure 3.6: Experimental results (training) for the image in Fig. 5. (a) matching confidence level 
(b) parameter M2 (c) parameter HSMOOTH (d) parameter MAXMIN. 

(a) (b) (c) (d) 

Figure 3.7: Improvement of the segmentation over time, (a) initial segmentation (b) segmentation 
at time step 200 (c) segmentation at time step 400 (d) segmentation at time step 600. 

reflection on the car as the position of the sun changed and clouds came in and out the 
field of view of the camera that had auto iris adjustment turned on. The overall goal is to 
recognize the car in the image. It should be noted that although the image is in color, for 
publication purposes it is being shown in grayscale. 

Figure 3.5(b) shows the 2-D model of the car located in Figure 3.5(a). The dark squares 
in Figure 3.5(b) correspond to labels of the vertices in the polygonal approximation of 
the car. The car is extracted manually in an interactive session from the first frame in 
the sequence and its polygonal approximation (Fig. 3.5(b)) is used as the model in the 
cluster-structure matching algorithm. 

Figure 3.6(a) shows how the confidence, averaged over 5 runs, changes over time for the 
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(a) (b) 

Figure 3.8: Polygonal approximation of the car. (a) default M2 parameter (b) learned M2 param- 
eter. 

image shown in Figure 3.5(a). It should be noted that over time the confidence shown in 
Figure 3.6(a) increases. At the end of the training phase the confidence of the match is over 
0.9 on a scale which varies between 0 and 1. For acceptable recognition, the confidence of 
matching has to be greater than 0.75 in the experiments reported here. 

Figures 3.6(b), 3.6(c), and 3.6(d) show how the M2, Hsmooth and Maxmin change over 
time for a particular run, respectively. It can be seen clearly that the learned values of M2, 
Hsmooth, and Maxmin are considerably different from their starting random values. 

To illustrate the results further, Figure 3.7 shows how the segmentation of the image 
improves over time during training. Figure 3.7(a) depicts the segmentation before applying 
the learning algorithm. Figures 3.7(b) and 3.7(c) depict the segmentation after 1/3 and 2/3 
of total time (600 iterations) for training has elapsed, respectively. Figure 3.7(d) depicts 
the segmentation at the end of the training phase. It can be seen that the results improve 
considerably. While Figure 3.8(a) shows the extracted features (polygonal approximation 
of the car) using the default M2, parameter Figure 3.8(b) shows the same feature using the 
learned parameter that results in high matching confidence. 

Figure 3.9(a) shows another sample frame in the image sequence in which the car of 
Figure 3.5(b) must be identified. It can be seen that the lighting conditions in the outdoor 
image is significantly different from the one shown in Fig. 3.5(a). The image is taken at 
a different time from Figure 3.5(a). Figure 3.9(b) shows the segmentation with default 
Phoenix parameters. It should be noted that when default parameters are used the car is 
broken up into many small blobs from which polygonal approximation of the car cannot be 
accurately obtained. Figures 3.9(c) and 3.9(d) show the segmentation obtained by using the 
parameters obtained from learning, and the polygonal approximation of the car obtained 
from the segmented image, respectively. The confidence of model matching is 0.88. 

Figure 3.10(a) shows an indoor color image. The large triangular shaped object (wedge) 
is the object of interest for recognition. Figure 3.10(b) shows the segmentation result using 
default parameters from which the appropriate polygonal approximation of the triangular 
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(a) (b) (c) (d) 

Figure 3.9: Experimental results, (a) third frame of the image sequence (b) segmentation with 
default parameters (c) segmentation with learned parameters (d) final polygonal approximation for 
the car. 

(a) (b) (c) 

^ 

(d) 

Figure 3.10: Experimental results on an indoor image, (a) the color image (b) segmentation with 
default parameters (c) segmentation with learned parameters (d) final polygonal approximation for 
the wedge. 

object cannot be obtained. Figures 3.10(c) and 3.10(d) show the segmentation and the 
polygonal approximation of the triangular object with learned parameters respectively. In 
this case the confidence of model matching is 0.90. It took about a few hundred iterations 
to obtain the result shown in Figure 3.10(c) and (d). 

3.6     Conclusion 

The model-based system presented in this paper uses the recognition component as part 
of the evaluation functions for controlling feedback and learning parameters for image seg- 
mentation and feature extraction in a systematic way. In the experiments we have used a 
look-up table to represent the Q function. However, look-up table representation may not 
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be adequate in large problems since the search space is often too large to allocate entire 
memory. A possible solution to this problem is to first classify input images into represen- 
tative clusters [12], for example, using algorithms such as the K-Means algorithm, and then 
allocate memory only to the centers of these clusters. For a given image, generalization can 
be made by searching for the nearest cluster center. In general, however, compact function 
representation schemes that can generalize across spaces must be sought. 

One additional benefit of the approach, due to the stochastic nature of reinforcement 
learning, is that the system is capable of exploring a significant portion of the search space, 
resulting in the discovery of good solutions, which, in general, cannot be achieved by any 
deterministic or simple supervised learning methods. Although we have used a three stage 
system to demonstrate a general approach to multi-stage model-based object recognition 
in a reinforcement learning paradigm, it can certainly be extended to systems having any 
number of stages. There is no doubt however that computational complexity will increase 
as the number of stages goes up. 

Finally, if vision systems could be designed in one-stage as a single black box, the "simple" 
reinforcement paradigm would have sufficed. Earlier work on one-stage systems used a team 
of stochastic semi-linear units for learning image segmentation parameters [64]. In reality, 
however, vision systems have multiple stages for real-world tasks with parameters that need 
to be adjusted at each stage. Delayed reinforcement learning based approach presented 
here shows promise in providing a potential solution to the problem of object recognition 
in multi-stage systems. 
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Chapter 4 

Integrated Image Segmentation 
and Object Recognition 

This paper presents a general approach to image segmentation and object recognition that 
can adapt the image segmentation algorithm parameters to the changing environmental 
conditions. Segmentation parameters are learned using a reinforcement learning (RL) algo- 
rithm that is based on a team of learning automata and operates separately in a global or 
local manner on an image. The edge-border coincidence is used as a short term reinforce- 
ment to reduce the computational expense due to model matching during the early stage of 
object recognition. However, since this measure is not reliable for object recognition, it is 
used later in conjunction with model matching in a closed-loop object recognition system 
that uses the results of model matching as a reinforcement signal in a "biased" learning 
system. The control switches between learning integrated global and local segmentation 
based on the quality of segmentation and model matching. Results are presented for both 
indoor and outdoor color images where the performance improvement is shown for both 
image segmentation and object recognition with experience. 

4.1    Introduction 

A model based object recognition system has three key components: image segmentation, 
feature extraction, and model matching. The goal of image segmentation is to extract 
meaningful objects from an input image. Image segmentation is an important and one 
of the most difficult low-level computer vision tasks [13]. All subsequent tasks including 
feature extraction, model matching, rely heavily on the quality of the image segmentation 
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process. 

The inability to adapt the image segmentation process to real-world changes is one of 
the fundamental weaknesses of typical model-based object recognition systems. Despite the 
large number of image segmentation algorithms available [11], no general methods have been 
found to process the wide diversity of images encountered in real world applications. Usually, 
an object recognition system is open-loop. Segmentation and feature extraction modules 
use default algorithm parameters, and generally work as pre-processing steps to the model 
matching component. The fixed sets of algorithm parameters used in various image seg- 
mentation and feature extraction algorithms generally degrade the system performance and 
lack adaptability in real-world applications. These default sets of algorithm parameters are 
usually obtained by the system designer by following a trial and error method. Parameters 
obtained in this way are not robust, since when the conditions for which they are designed 
are changed slightly, these algorithms generally fail without any graceful degradation in 
performance. 

The usefulness of a set of algorithm parameters in a system can only be determined 
by the system's output, i.e., recognition performance. To recognize different objects or 
instances of the same object in an image, we may need different sets of parameters locally 
due to the changes in local image properties, such as brightness, contrast, etc. Also the 
changing environmental conditions (such as the time of the day, weather conditions, etc.), 
affect the appearance of an image which requires the capability to adapt the representation 
parameters for multi-scenario object recognition. To achieve robust performance in real- 
world applications, a need exists to apply learning techniques which can efficiently search 
image segmentation and feature extraction algorithm parameter spaces and find parameter 
values which yield optimal results for the given recognition task. In this paper, our goal 
is to develop a general approach to a learning integrated model-based object recognition 
system, which has the ability to continuously adapt to normal environmental variations. 

In the remainder of the section 1, we present an overview of the approach, related 
work and the contributions of the paper. Section 2 gives the details of the approach and 
discusses algorithms used in this research. Section 3 provides the experimental results for 
segmentation and recognition on both indoor and outdoor color images. Finally, section 4 
presents the conclusions and the future work. 

4.1.1     Overview of the Approach 

In this paper, we present a general approach to reinforcement learning integrated image 
segmentation and object recognition. A reinforcement learning system is integrated into 
the model-based object recognition system to close the loop between model matching and 
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Figure 4.1: Reinforcement learning integrated image segmentation and object recognition system. 

image segmentation. The basic assumption is that we know the models of the objects that 
are to be recognized, but we do not know the number of objects and their locations in 
the image. The goal of the system is to maximize the matching confidence by finding a 
set of image segmentation algorithm parameters for the given recognition task (We have 
not discussed the problem of feature extraction parameters in this paper. It is described 
in a separate paper by Peng and Bhanu [66]). Thus, we address the problem of adaptive 
segmentation as finding a set of parameters for the given model and given input image. It 
reflects the fact that there may not exist a single set of "optimal" parameters which can 
be used for recognizing different objects in a given image. Figure 4.1 provides an overview 
of the system. Basically, the system consists of image segmentation, feature extraction, 
model matching, and reinforcement learning modules. The image segmentation component 
extracts meaningful objects from input images, feature extraction step performs polygo- 
nal approximation of connected components, and the model matching step tells us which 
regions in the segmented image contain the recognized object. The model matching mod- 
ule indirectly evaluates the performance of the image segmentation and feature extraction 
processes by generating a real valued matching confidence indicating the degree of success. 
This real valued matching confidence is then used to drive learning for image segmentation 
parameters in a reinforcement learning framework. 

Given the computational expense for performing model matching, our approach uses 
edge-border coincidence [14] as a segmentation evaluation measure to find an initial point 
from which to begin the search through weight space. However, since this measure is not re- 
liable as matching confidence, we use it in conjunction with model matching in a closed-loop 
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system to adapt segmentation parameters to current input image conditions. Subsequent 
feature extraction and model matching are carried out for each connected component which 
passes through the size filter based on the expected size of objects of interest in the image. 
The highest matching confidence is taken as the reinforcement signal. Learning takes place 
as a result of interactions between segmentation and model matching. 

Significant differences in characteristics exist between an image and its subimages, so 
operating conditions are tuned to these differences to achieve optimal performance of seg- 
mentation and model matching. For example, to recognize two objects in an image or a 
single object at different locations, it is often difficult, if not impossible, to meet all re- 
quirements with one process. It is essential to localize computation to meet each individual 
requirement. Thus, we adopt a control that switches between global and local segmentation 
phases based on the quality of image segmentation and model macthing. 

The reinforcement learning integrated image segmentation and object recognition sys- 
tem is designed to be fundamental in nature and is not dependent on any specific image 
segmentation algorithms or type of input images. Reinforcement learning requires only the 
goodness of the performance rather than the details of algorithms that produce the results. 
To represent segmentation parameters suitably in a reinforcement learning framework, the 
system only needs to know the segmentation parameters and their ranges. In our approach, 
a binary encoding scheme is used to represent the segmentation parameters. While the 
same task could be learned in the original parameter space, for many types of problems, 
including image segmentation, the binary representation can be expected to learn much 
faster [65]. In this sense, the system is independent of a particular segmentation algorithm 
used. 

4.1.2    Related Work and Our Contributions 

There is no published work on reinforcement learning integrated image segmentation and 
object recognition using multiple feedbacks. Bhanu and Lee [12] presented an image seg- 
mentation system which incorporates a genetic algorithm to adapt the segmentation process 
to changes in image characteristics caused by variable environmental conditions. In their 
approach, multiple segmentation quality measures are used as feedback. Some of these 
measures require ground-truth information which may not be always available. Peng and 
Bhanu [65] presented an approach in which a reinforcement learning system is used to close 
the loop between segmentation and recognition, and to induce a mapping from input images 
to corresponding segmentation parameters. Their approach is based on global image sege- 
mentation which is not the best way to detect objects in an image; we need the capability 
of performing segmentation based on local image properties (local segmentation). Another 
disadvantage of their method is its time complexity which makes it problematic for practical 
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application of computer vision. 

For object recognition applications, the efficiency of the learning techniques is very im- 
portant. How to add bias, a prior or domain knowledge in ä reinforcement learning based 
system is an important topic of research in reinforcement learning [50] [22] [89]. For the 
RATLE system, Maclin and Shavlik [50] accept "advice" expressed in a simple program- 
ming language. This advice is compiled into "knowledge-based" connectionist Q-learning 
network. They show that advice-giving can speed up (J-learning when the advice is helpful 
(though it need not be perfectly correct). When the advice is harmful, back propagation 
training quickly overrides it. Dorigo and Colombetti [22] show that by using a learning 
technique called learning classifier system (LCS), an external trainer working within a RL 
framework can help a robot to achieve a goal. Thrun and Schwartz [89] have discussed 
methods for incorporating background knowledge into a reinforcement learning system for 
robot learning. 

In our approach, the edge-border coincidence is used to locate an initial good point 
from which to begin the search through weight space for high matching confidence values. 
Although as a segmentation evaluation measure the edge-border coincidence is not as reliable 
as the matching confidence, lower edge-border coincidence values always result in poor model 
matching. Likewise, higher edge-border coincidence values suggest with high probability 
that the current set of segmentation parameters is in a close neighborhood of the optimal 
one. It is an inexpensive way to arrive at an initial approximation to a set of segmentation 
parameters that gives rise to the optimal recognition performance. The control switches 
between global and local segmentation processes to optimize recognition performance. To 
further speed-up the learning process the reinforcement learning is biased when the model 
matching confidence or the edge-border coincidence is used as the reinforcement signal (note 
that the reinforcement learning is unbiased initially when the edge-border coincidence is used 
as the reinforcement signal). We achieve better computational efficiency of the learning 
system and improved recognition rates compared to the system developed by Peng and 
Bhanu [65]. 

The original contributions of the reinforcement learning integrated image segmentation 
and object recognition system presented in this paper are: 

• To achieve robustness for image recognition system operating in real world, model 
matching confidence is used as feedback to influence the image segmentation process, 
and thus provide an adaptive capability. 

• A RL system based on a team of learning automata is applied to represent and update 
both global and local image segmentation parameters. The learning system optimizes 
segmentation performance on each individual image and accumulates segmentation 
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experience over time to reduce the effort needed to optimize future unseen images. 

• Edge-border coincidence, as a segmentation evaluation measure, reduces computa- 
tional costs by avoiding expensive model matching, especially during earlier stages of 
learning. 

• Learning local segmentation parameters on subimages, which may potentially contain 
objects, improves the performance of object recognition system. 

• Explicit bias is used in the RL based system to speed up the learning process for 
adaptive image segmentation. 

4.2    Technical Approach 

The goal of our system is to maximize the model matching confidence by finding a set 
of image segmentation algorithm parameters for a given recognition task. To reduce the 
computational expense of model matching, the edge-border coincidence is first used as 
evaluation function to find a set of parameters from which to begin the learning. The 
segmentation process has two distinct phases: global and local. While global segmentation is 
performed for the entire image, local segmentation is carried out only for selected subimages. 
For a set of input images, the system takes inputs sequentially. This is similar to human 
visual learning process, in which the visual stimulus are presented temporally in a sequential 
manner. For the first input image, since the system has no accumulated experience, we 
initialize the system using random value of weights in the unbiased stocastic RL algorithm. 
For each input image thereafter, the learning process starts from the set of segmentation 
parameters learned based on all the previous input images. The following are the main 
steps of our learning algorithm: 

Initial Approximation. The edge-border coincidence is used as a short term reinforce- 
ment during earlier stages of learning to drive weight changes without going through the 
expensive model matching process. Once the edge-border coincidence has exceeded a given 
threshold, the weight changes will be driven by the matching confidence, which requires 
more expensive computation of feature extraction and model matching. 

Learning Global Segmentation. A network of biased Bernoulli units generates a 
set of segmentation parameters from which segmentation is performed on the entire image. 
The evaluation of the segmentation process is provided by the model matching confidence, 
which is then used to drive changes to the weights according to the reinforcement learning 
algorithm. We assume that we have a prior knowledge of the size of objects of interest in 
the images. For those connected components which pass through the size filter based on the 
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expected size of objects of interest in the image, we perform feature extraction and model 
matching. The highest matching confidence is taken as the reinforcement to the learning 
system. If the highest matching confidence level is above a given switching threshold, we 
focus image segmentation and model matching on the connected component and switch to 
the local search process. 

Learning Local Segmentation. Once a connected component has been extracted from 
the input image, the local search begins to find the best fit parameters for the subimage. 
It starts from the current estimate of weights that resulted from global learning. Similar to 
global learning, the matching confidence is used to update the weights estimate, until the 
matching confidence reaches the accepting threshold (0.8 in our experiments) or the number 
of iterations reaches the MaxLocal (in our experiments, it is set at 20). If after MaxLocal 
loops, the matching confidence is still under the accepting threshold, we switch back to the 
global learning process, continue the learning from where we switched to the local search 
process. If the matching confidence reaches the accepting threshold, the learning process 
for the current input image is terminated. 

4.2.1 Phoenix Image Segmentation Algorithm 

Since we are working with color imagery in our experiments, we have selected the Phoenix 
segmentation algorithm [46][59]developed at Carnegie-Mellon University and SRI Interna- 
tional. The Phoenix segmentation algorithm has been widely used and tested. It works 
by recursively splitting regions using histogram for color features. Phoenix contains seven- 
teen different control parameters, fourteen of which are adjustable. The four most critical 
ones that affect the overall results of the segmentation process are selected for adaptation: 
Hsmooth, Maxmin, Splitmin, and Height. Hsmooth is the width of the histogram smoothing 
window. Maxmin is the lowest acceptable peak-to-valley height ratio. Splitmin represents 
the minimum area for a region to be automatically considered for splitting. Height is the 
minimum acceptable peak height as a percentage of the second highest peak. Each param- 
eter has 32 possible values. The resulting search space is 220 sample points. Each of the 
Phoenix parameters is represented using 5 bit binary code, with each bit represented by 
one Bernoulli unit. To represent 4 parameters, we need a total of 20 Bernoulli units. More 
details about Phoenix are given in the report by Laws [46]. 

4.2.2 Segmentation Evaluation 

Given that feature extraction and model matching are computationally expensive processes, 
it is imperative that initial approximation be made such that overall computation can be 
reduced. To achieve this objective, we introduce a secondary feedback signal - segmentation 
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Table 4.1: Ranges for selected Phoenix parameters. 

Parameter Sampling Formula Range 
Hsmooth: 

hs £ [0 : 31] 
hsmooth=l + 2 x hs 1 -63 

Maxmin: 
mm € [0 : 31] 

ep=ln(100)+0.05 X mm 
maxmin = exp(ep) + 0.5 

100-471 

Splitmin: 
sm € [0 : 31] 

splitmin=9 + 2 x sm 9-71 

Height: 
h e [0 : 31] 

height=l + 2 * h 1 -63 

(a) (b) (c) 

Figure 4.2: Edge-border coincidence, (a) input image; (b) Sobel edge magnitude image (thresh- 
old = 200); (c) boundaries of the segmented image. Segmentation parameters are: Hsmooth=7, 
Maxmin=128, Splitmin=47, Height=60. 

evaluation that evaluates the image segmentation quality. There are a large number of 
segmentation quality measures that have been suggested. The segmentation evaluation we 
selected is the edge-border coincidence [12][53], which measures the overlap of the region 
borders in the segmented image relative to the edges found using an edge detector, and 
does not depend on any ground-truth information. In this approach, we use the Sobel edge 
detector to compute the necessary edge information. Edge-border coincidence is defined as 
follows. Let E be the set of pixels extracted by the edge operator and S be the set of pixels 
found on the region boundaries obtained from the segmentation algorithm: 

Edge — border coincidence = 
n{Ef\S) 

n(E)    ' 

where n(A) is the number of elements in set A 

Figure 4.2 shows the Sobel edge image of an experimental indoor color image and the 
boundaries of the segmented image using the Phoenix segmentation algorithm. The edge- 
border coincidence for the segmented image is 0.6825.  Segmentation evaluation indicates 
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the quality of the segmentation process. Matching confidence, the recognition system's 
output, indicates the confidence of the model matching process, and indirectly shows the 
segmentation quality of the recognized object. It is possible that segmentation evaluation is 
high and matching confidence level is low, or segmentation evaluation is low and matching 
confidence is high. Figure 4.3(a) shows that global segmentation evaluation is not well cor- 
related with matching confidence. However, local segmentation evaluation, which measures 
the overlap between the edges and region borders of a subimage, is strongly correlated to 
the matching confidence, as shown in Figure 4.3(b). 

Although the global segmentation evaluation does not correctly predict the matching 
confidence, for our purpose it is sufficient to drive initial estimates. If the edge-border 
coincidence is under a threshold, which indicates a low possibility to get a good recognition 
result, the system repeats the initial estimation process using the edge-border coincidence 
as the sole reinforcement feedback signal until the edge-border coincidence is greater than 
the threshold. At that time, the segmentation performance will be determined completely 
by the model matching. 

4.2.3    Reinforcement Learning for Image Segmentation 

Reinforcement learning is the problem faced by an agent that must learn behavior through 
trial-and-error interactions with a dynamic environment. It is appropriately thought of 
as a class of problems, rather than as a set of techniques [44]. This type of learning has 
a wide variety of applications, ranging from modeling behavior learning in experimental 
psychology to building active vision systems. The term reinforcement comes from studies of 
animal learning in experimental psychology. The basic idea is that if an action is followed by 
a satisfactory state of affairs or an improvement in the state of affairs, then the tendency to 
produce that action is reinforced. Reinforcement learning is similar to supervised learning 
in that it receives a feedback to adjust itself. However, the feedback is evaluative in the 
case of reinforcement learning. In general, reinforcement learning is more widely applicable 
than supervised learning and it provides a competitive approach to building autonomous 
learning systems that must operate in real world. 

There are several reasons why we apply reinforcement learning in our computer vision 
system. First, reinforcement learning requires knowing only the goodness of the system 
performance rather than the details of algorithms that produce the results. In the ob- 
ject recognition system, model matching confidence indirectly evaluates the performance 
of image segmentation and feature extraction processes. It is a natural choice to select 
matching confidence as a reinforcement signal. Second, convergence is guaranteed for sev- 
eral reinforcement learning algorithms. Third, reinforcement learning is well suited to the 
multi-level object recognition problems in image understanding. It can systematically assign 
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(b) 

Figure 4.3:   (a) Global edge-border coincidence vs.   matching confidence; (b) Local edge-border 
coincidence vs. matching confidence for recognizing the cup in the image shown in Figure 4.2(a). 

rewards to different levels in a computer vision system. 

Inputs 

Figure 4.4: Basic structure of a Bernoulli unit. 

The particular class of reinforcement learning algorithms employed in our system is the 
connectionist REINFORCE algorithm [93], where units in such a network are Bernoulli 
quasi-linear units. Figure 4.4 shows the basic structure of a Bernoulli unit. A team of five 
independent Bernoulli units represent a segmentation parameter with 32 possible values. 
The output of each unit is either 1 or 0, determined stochastically using the Bernoulli 
distribution with probability mass function p = f(s), where / is the logistic function. For 
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such an unit, p represents the probability of choosing 1 as its output value. 

/(*) = i   ,    _,i     where s = Y,WHXJ i + e i 

where Wij is the weight of the jth input for unit i, and Xj is the jth input value for each unit. 
In the reinforcement learning paradigm, the learning component uses the reinforcement r(t) 
to drive the weight changes according to a particular reinforcement learning.algorithm used 
by the network. The specific algorithm we used has the following form: for each unit, 
at the rth time step, after generating output y(t) and receiving reinforcement signal r(t), 
increment each weight Wij by 

Awij(t) = a[r{t) - f(t - l)][yi{t) - jji(t - 1)]XJ - 6Wij{t) 

where a is the learning rate, S is the weight decay rate, Xj is the input to each Bernoulli 
unit, yi is the output of the ith Bernoulli unit. The term r(t) — f(t — 1) is called the 
reinforcement factor, and yi(t) — y~i(t — 1) is the eligibility of the weight Wij. f(t) is the 
exponentially weighted average of prior reinforcement values, 

f(t) = jf(t-l) + (l-j)r(t),   withf(0) = 0 

7 is the trace parameter. Similarly, y~i(t) is an average of past values of y{ computed by the 
same exponential weighted scheme used for f(i), 

&•(*) = 7i«(*-i) + (i-7)y.-(<) 

The algorithm has the convergence property [93] such that it statistically climbs the gradient 
of expected reinforcement in weight space. The weight decay is used as a simple method to 
force the sustained exploration of the weight space. 

Note that a team of 20 Bernoulli units represents the four image segmentation parameters 
selected for learning. Each bit of a parameter is independent of each other. Thus, it allows 
us to search the parameter space thoroughly. 

4.2.4    Feature Extraction and Model Matching 

Feature extraction consists of finding polygon approximation tokens for each connected 
component obtained after image segmentation. To speed up the learning process, we assume 
that we have the prior knowledge of the approximate size (area) of the object, and only 
those connected components whose area (number of pixels) are comparable with the area 
of the model object are approximated by a polygon.  In Figure 1, the region filter selects 
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(a) (b) (c) 

Figure 4.5: (a) Boundaries of the segmented image shown in Figure 4.2(a) (segmentation parame- 
ters are: Hsmooth=7, Maxmin=128, Splitmin=47, Height=b4). (b) Selected regions whose areas are 
in the expected range (200 - 450 pixels), (c) Polygon approximation of these regions (parameters as 
specified in this section). 

those connected components whose areas are in the expected range. For example, in our 
experiment on indoor images, the cup is the target object. The expected area is from 
200 to 450 pixels. Figure 4.5 shows the boundaries of a segmented image, selected regions 
whose areas are in the expected range, and the polygon approximation of these regions. 
The polygon approximation is implemented by calling the polygon approximation routine 
in Khoros [70]. The resulting polygon approximation is a vector image to store the result 
of the linear approximation. The image contains two points for each estimated line. The 
polygon approximation has a fixed set of parameters: 

• Minimal segment length for straight line - 5. When the estimated straight line has a 
length less than this threshold, it is skipped over. 

• Elimination percentage - 0.1. Percentage of line length rejected to calculate parame- 

ters of the straight line. 

• Approximation error - 0.6. Threshold Value for the approximation error. When the 

calculated error is greater than this value, the line is broken. 

Model matching employs a cluster-structure matching algorithm [15] which is based on 
forming the clusters of translational and rotational transformations between the object and 
the model. The algorithm takes as input two sets of tokens, one of which represents the 
stored model and the other represents the input region to be recognized. It then performs 
topological matching between the two token sets and computes a real number that indicates 
the confidence level of the matching process. Basically, the technique consists of three steps: 
clustering of border segment transformations; finding continuous sequences of segments in 
appropriately chosen clusters; and clustering of sequence average transformation values. 

More details about this algorithm are given in [15]. 
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Figure 4.6: Matching confidence history of three runs of the biased and unbiased RL algorithms 
on the image shown in Figure 4.2(a). (a) biased; (b) unbiased. 

4.2.5    Biased Reinforcement Learning for Image Segmentation 

In the RL algorithm as described in section 2.3, each of the bits of each of the parameters 
is independent. The output of each bit depends on the value of p, which represents the 
probability of an unit to choose 1 as its output. In the initialization phase, we use the 
unbiased RL algorithm in which the output of each bit of a parameter is determined in the 
following way: 

[   1   with probability p 
I   0   with probability 1 — p Vi 

It is "unbiased" in that the output of a bit is governed solely by the Bernoulli probability 
law. The advantage is that rapid changes in output values allow giant leaps in the search 
space, which in turn enables the learning system to quickly discover suspected high pay-off 
regions. However, once the system has arrived at the vicinity of a local optimum, as will 
be the case after the initial estimation, changes in the most significant bit will drastically 
alter the parameter value, often jumping out of the neighborhood of the local optimum. 
Ideally, once the learning system discovers that it is within a possible high pay-off region, 
it should attempt to capture the regularities of the region. This then biases future search 
toward points within it. The challenge, of course, is to have a learning algorithm that allows 
the parameters controlling the search distribution to be adjusted so that this distribution 
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comes to capture this knowledge. The algorithm described here shows some promise in 
this regard. In order to force parameters to change slowly, after the initialization phase, 
we apply a biased RL algorithm in which the two most significant bits of a parameter are 
forced to change in a slower fashion as: 

Vi 
1   if p > 0.5 
0   otherwise 

and other bits use the the same rule as described in the unbiased RL algorithm. Figure 4.6 
shows the experimental results of the two schemes on the image shown in Figure 4.2(a). 
In this experiment, we only apply the initialization followed by global learning without 
switching between global and local learning. The results show that the biased RL algorithm 
demonstrates a speed up of 2 - 3. 

4.2.6    Algorithm Description 

Figure 4.7 shows the implementation of our algorithm. The algorithm works by switching 
between global and local segmentation. Initially, if the system has no accumulated knowl- 
edge, the edge-border coincidence is used as the evaluation function to search a set of image 
segmentation parameters using unbiased reinforcement learning algorithm. Otherwise, the 
input image is segmented using the set of parameters learned from previous images. EB1 
and EB2 are two thresholds for edge-border coincidence. During the initial unbiased rein- 
forcement learning phase, if the edge-border coincidence is greater than EB1 ( = 0.5 in our 
experiments), then we can start the learning process with a high expectation to generate 
good recognition results. During the global segmentation phase, if the segmentation quality 
is less than EB2 ( = 0.4 in our experiments), the object is less likely to be present in the 
segmented image, and choosing another set of parameters using the biased RL algorithm 
with the current reinforcement signal can speed up the process. 

In the global segmentation procedure, if the global segmentation loops more than Max- 
Global, we conclude that the object does not appear in the image and terminate the learning 
process for the given input image. For each connected component which passes the region 
filter, if the matching confidence is greater than Switch, then we can switch the control 
from global to local segmentation. During local segmentation, if the matching confidence 
reaches Accept, we conclude that the connected component is the recognized model object. 
If the local segmentation loops more than MaxLocal, the control will switch back to global 
segmentation since the object is not likely to be extracted in the subimage and we resume 
the global segmentation process. 
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procedure InitUlization() 

generate a set of random weights 
repeat 

compute the segmentation parameters 
segment the image and compute edge-border coincidence 
r(i) = edge-border coincidence, update weights 

until edge-border coincidence > EB1 

procedure Global_Segmentation() 

r(0) = 0.5,  highest_matching_confidence = 0 
for i from 1 toMaxGlobal do 

for each connected component which passes the size filter do 
feature extraction and model matching 
if matching_confidence > Switch then 

Local_Segmentation() 

if matching_confidence > highest_matching_confidence 
highest_matching_confidence = matching_confidence 

r(i) = highest_matching_confidence 

if recognized all the connected components then exit 
count = 0 
repeat 

compute the segmentation parameters using r(i) 
segment the image using the current set of parameters 
count++ 

if count > MaxSeg then exit 
until edge-border coincidence > EB2 

procedure Local_Segmentation() 
extract subimage from the input image 
compute standard deviations of parts of the subimage 
copy the weights from global to local process 
count = 0 

while count < MaxLocal do 
subimage segmentation, feature extraction, and model matching 
update weights using matching confidence as reinforcement 
if matching confidence > Accept then recognized and return 
count++ 

Figure 4.7: Algorithm description. 

4.3    Experimental Results 

The system is verified through a set of 12 indoor and a set of 12 outdoor color images. These 
images are acquired at different times and different viewing distances with varying lighting 
conditions. The size of indoor images is 120 by 160 pixels, and the size of outdoor images 
is 120 by 120 pixels. Each image is decomposed into 4 images for Phoenix segmentation - 
red, green, blue components, and the Y component of YIQ model of color images. For the 
indoor images, the desired object is the cup in the image, and in the outdoor images, the 
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Figure 4.8: Row 1: input images; row 2, 3: corresponding segmented image and recognized object. 
For each input image, global segmentation evaluation, local segmentation evaluation for the selected 
object, and matching confidence are (0.67, 0.74, 0.87); (0.87, 0.62, 0.93); (0.22, 0.82, 0.91); (0.68, 
0 73 0 92) The learned Phoenix segmentation parameters Hsmooth, Maxmin, Splitmin, and Height 
after local learning process are (7 122 47 52); (7 128 47 52); (5 471 19 58); (11 192 59 48).. 

target object is the traffic sign. The expected size of the cup and the traffic sign are 200 to 

450 pixels and 36 to 100 pixels, respectively. 

Based on the size of the object to be recognized in the image, we divide the Y component 
image into 48 subimages for the indoor images, and 36 subimages for the outdoor images. 
Each subimage's size is 20 by 20 pixels. The standard deviations of those subimages serve 
as inputs to each Bernoulli unit, i.e., each Bernoulli unit has a total of 48 inputs (and 
therefore, 48 weights) for the indoor image, and has a total of 36 inputs (36 weights) for 
the outdoor image. To learn the four selected Phoenix segmentation parameters, we need 
20 Bernoulli units. So there is a total of 960 weights for indoor images, and 720 weights for 

outdoor images. 

For the team of 20 Bernoulli units, the parameters a, j, and <5 are determined empirically, 
and they are kept constant for all images. In our experiments, a = 0.02, 7 = 0.9, and 
S = 0.01, EB1 = 0.5, EB2 = 0.4, MaxGlobal, MaxLocal, and MaxSeg are all set to 20. 
The threshold for matching confidence Switch = 0.6, and Accept = 0.8. Threshold used for 

extracting edges using Sobel operator is set at 200. 

4.3.1    Results on Indoor and Outdoor Images 

Figure 4.8 and 4.9 show the experimental results on the set of 12 indoor color images 
and the set of 12 outdoor color images.   For each indoor image, the globally segmented 

65 



Figure 4.9: Row 1: input images; row 2, 3: corresponding segmented image and recognized object. 
For each input image, global segmentation evaluation, local segmentation evaluation for the selected 
object, and matching confidence are (0.59, 0.51, 0.82); (0.79, 0.57, 0.85); (0.85, 0.76, 0.88); (0.82, 
0.53, 0.92). The learned Phoenix segmentation parameters Hsmooth, Maxmin, Splitmin, and Height 
after local learning process are (11 367 43 26); (11 259 23 46); (11 259 29 56); (9 276 31 46). 

image using the set of learned parameters and the extracted object which has been finally 
recognized, are presented. For each set of images, the 12 images are taken sequentially. 
Except for the first image, the learning process for each image starts from the global seg- 
mentation parameters learned from all the previous images. For the first input image, the 
learning system is initialized using the unbiased RL algorithm. Usually, it takes less than 
45 iterations to find a set of segmentation algorithm parameters which produces high edge- 
border coincidence. Figure 4.8 and 4.9 also show the global edge-border coincidence, local 
edge-border coincidence, model matching confidence, and the four learned segmentation 
parameters after local learning process for each input image. 

Figure 4.10 shows the CPU time for the 12 indoor images and 12 outdoor images for five 
different runs, and the number of loops for each input image, which is the sum of all the 
loops involved in the global learning and local learning processes. These two curves show 
the learning capability of the system, i.e., the system uses less and less CPU time with 
experience to find a set of segmentation parameters and correctly recognizes the object. 
The number of learning loops decreases with the accumulation of experience. 
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Figure 4.10: (a) CPU time for 5 different runs on 12 indoor images and the average; (b) Number 
of loops for 5 different runs on 12 indoor images and the average; (c) CPU time for 5 different runs 
on 12 outdoor images; (d) Number of loops for 5 different runs on 12 outdoor images. 

4.3.2    Comparison of the Two Approaches 

In this section we compare the performance of our system as shown in Figure 4.1 with the 
approach discussed in the paper by Peng and Bhanu [65]. We show the effect of incorpo- 
rating segmentation evaluation using the edge-border coincidence into the learning system 
and the impact of global and local segmentations on model matching. 

The key differences between the two methods are the introduction of the local segmen- 
tation process, the biasing of RL algorithm, and the use of edge-border coincidence as an 
evaluation of the segmentation performance during earlier stages of learning in order to 
reduce the computational expense stemming from model matching. The segmentation pro- 
cess alternates between the whole image and its subcomponents. The local segmentation is 
highly desirable when there are multiple targets or a single target at multiple locations with 
different local characteristics. It can dramatically improve the recognition performance. 
The biasing of RL algorithm reduces computational time as illustrated in Figure 4.6. 

In the paper by Peng and Bhanu [65], the matching confidence is the only feedback 
that drives learning. Although it is undoubtedly the most reliable measure, it is relatively 
expensive to compute. Here the edge-border coincidence provides us with a cheap way 
to find a good point from which to begin the more expensive search for high matching 
confidence values. Figure 4.11 shows the comparison results of the two schemes: our scheme 
(scheme 1) and Peng and Bhanu's scheme (scheme 2). Although good initial estimates may 
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Figure 4.11: Comparison of two approaches: scheme 1-approach presented in this paper, scheme 
2-Peng and Bhanu's approach (a) Comparison of the average CPU time of 5 different runs on 12 
indoor images; (b) Comparison of the accumulated average CPU time of 5 different runs on 12 indoor 
images. *?' 

not always result in faster discovery of high matching confidence values, the edge-border 
coincidence seems to work well in practice for all the problems we have experimented. 

4.4    Conclusions and Future Work 

We have presented a proof-of-the-principle of a general approach for adaptive image seg- 
mentation and object recognition. The approach combines a domain independent sim- 
ple measure for segmentation evaluation (edge-border coincidence) and domain dependent 
model matching confidence in a reinforcement learning framework in a systematic manner to 
accomplish robust image segmentation and object recognition simultaneously. Experimen- 
tal results demonstrate that the approach is suitable for continuously adapting to normal 
changes encountered in real-world applications. 

For adapting to the wide varity of images encountered in real-world applications, we can 
develop an autonomous gain control system which will allow the matching between different 
classes of images taken under significantly different weather conditions (sun, cloud, snow, 
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rain) and adapt the parameters within each class of images. We use image context to divide 
the input images into several classes based on image properties and external conditions, 
such as time of the day, lighting condition, etc. [12]. When an image is presented, we 
use an image property measurement module and the available external information to find 
the stored information for this category of images, and start learning process from that 
set of parameters. This will overcome the problem of adapting to large variations between 
consecutive images. 

The real significance of using a learning network to select segmentation parameters to 
optimize model matching performance is that interconnections within the network can en- 
force coordination of the choices made by the output units in order to concentrate the search 
in suspected high-payoff regions of the parameter space. A network that can coordinate the 
choices made by the output units should be able to generate certain combinations of bits 
with greater probability than if their individual components were selected independently. If 
the network operates in this way it should expect to find high matching confidence values 
much more quickly than without coordination. We plan to explore these issues in the future. 
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Chapter 5 

Genetic Algorithm for Adaptive 
Image Segmentation 

Image segmentation is an extremely important and difficult low-level task. The difficulty 
arises when the segmentation performance needs to be adapted to the changes in image 
quality which is affected by variations in environmental conditions, imaging devices, time of 
day, etc. In this Chapter, we describe an adaptive image segmentation system that incor- 
porates a feedback loop consisting of a machine learning subsystem, an image segmentation 
algorithm, and an evaluation component which determines segmentation quality. The ma- 
chine learning component is based on genetic adaptation and uses separately a pure genetic 
algorithm and a combination of genetic algorithm and hill climbing. We present experimen- 
tal results which demonstrate learning and scalability of the technique with the number of 
parameters to adapt the segmentation performance in outdoor color imagery. 

5.1    Introduction 

Image segmentation is an old and difficult problem. It refers to the grouping of parts of an 
image that have "similar" image characteristics. All subsequent interpretation tasks includ- 
ing object detection, feature extraction, object recognition, and classification rely heavily 
on the quality of the segmentation process. The difficulty arises when the segmentation 
performance needs to be adapted to the changes in image quality. Image quality is affected 
by variations in environmental conditions, imaging devices, time of day, etc. Despite the 
large number of segmentation techniques presently available [26, 39], no general methods 
have been found that perform adequately across a diverse set of imagery, i.e., no segmen- 
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tation algorithm can automatically generate an "ideal" segmentation result in one pass (or 
in an open loop manner) over a range of scenarios encountered in practical applications. 
Any technique, no matter how "sophisticated" it may be, will eventually yield poor perfor- 
mance if it cannot.adapt to the variations in real-world scenes. The following are the key 
characteristics of the image segmentation problem: 

• When presented with a new image, selecting the appropriate set of algorithm param- 
eters is the key to effectively segmenting the image. Most segmentation techniques 
contain numerous control parameters which must be adjusted to obtain optimal 
performance, i.e., they are to be learned. The size of the parameter search space in 
these approaches can be prohibitively large, unless it is traversed in a highly efficient 
manner. 

• The parameters within most segmentation algorithms typically interact in a complex, 
non-linear fashion, which makes it difficult or impossible to model the parameters' 
behavior in an algorithmic or rule-based fashion. 

• The variations between images cause changes in the segmentation results, the objective 
function that represents segmentation quality varies from image to image. The search 
technique used to optimize the objective function must be able to adapt to these 
variations. 

• The definition of the objective function itself can be a subject of debate because there 
are no universally accepted measures of image segmentation quality. 

Hence, a need exists to apply an adaptive technique that can efficiently search the com- 
plex space of plausible parameter combinations and locate the values which yield optimal 
results. The approach should not be dependent on the particular application domain nor 
should it have to rely on detailed knowledge pertinent to the selected segmentation algo- 
rithm. Genetic algorithms (GA), which are designed to efficiently locate an approximate 
global maximum in a search space, have the attributes described above and show great 
promise in solving the parameter selection problem encountered in the image segmentation 
task. 

The next section of this Chapter argues about the genetic algorithms as the appropriate 
optimization technique for the segmentation problem. Section 3 describes the adaptive 
image segmentation algorithm. Section 4 presents the experimental results on a sequence 
of outdoor images. Section 5 presents the adaptive segmentation results when we scale the 
number of parameters in a scheme that uses genetic algorithms and hill climbing. Finally, 
Section 6 provides the conclusions of this Chapter. 
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Figure 5.1: Segmentation quality surface. 

5.2     Image Segmentation as an Optimization Problem 

Fig. 1 provides an example of an objective function that is typical for the image segmenta- 
tion process. The figure depicts an application in which only two segmentation parameters 
(maxmin and absscore) are being varied, and the corresponding segmentation quality ob- 
tained for any pair of algorithm parameters. Because the algorithm parameters interact in 
complex ways, the objective function is multimodal and presents problems for many com- 
monly used optimization techniques. Further, since the surface is derived from an analysis 
of real-world imagery, it may be discontinuous, may contain significant amounts of noise, 
and cannot be described in closed form. The derivation of this surface will be described in 
Section 3, where we discuss the segmentation evaluation process. 

The conclusion drawn from an analysis of many segmentation quality surfaces that we 
have examined is that we must utilize a highly effective search strategy which can withstand 
the breadth of performance requirements necessary for the image segmentation task. 

Various commonly used search techniques for functional optimization exist. These in- 
clude (a) exhaustive techniques (random walk, depth first, breadth first, enumerative), 
(b) calculus-based techniques (gradient methods, solving systems of equations), (c) partial 
knowledge techniques (hill climbing, beam search, best first, branch and bound, dynamic 
programming, A*), and (d) knowledge-based techniques (production rule systems, heuristic 
methods). The limitations of these methods are given in [12, 42, 95]. There are other search 
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techniques such as genetic algorithms, simulated annealing and hybrid or integrated meth- 
ods [12]. To address the characteristic of image segmentation problem as discussed earlier, 
we have selected genetic algorithms and hybrid methods for adaptive image segmentation. 

5.2.1     Genetic Algorithms 

Genetic algorithms were pioneered at the University of Michigan by John Holland and 
his associates [21, 31, 41]. The term genetic algorithm is derived from the fact that its 
operations are loosely based on the mechanics of genetic adaptation in biological systems. 
Genetic algorithms can be briefly characterized by three main concepts: a Darwinian notion 
of fitness or strength which determines an individual's likelihood of affecting future gener- 
ations through reproduction; a reproduction operation which produces new individuals by 
combining selected members of the existing population; and genetic operators which create 
new offspring based on the structure of their parents. 

A genetic algorithm maintains a constant-sized population of candidate solutions, known 
as individuals. The initial seed population from which the genetic process begins can be 
chosen randomly or on the basis of heuristics, if available for a given application. At 
each iteration, known as a generation, each individual is evaluated and recombined with 
others on the basis of its overall quality or fitness. The expected number of times an 
individual is selected for recombination is proportional to its fitness relative to the rest of 
the population. Intuitively, the high strength individuals selected for reproduction can be 
viewed as providers of "building blocks" from which new, higher strength offspring can be 
constructed. New individuals are created using two main genetic recombination operators 
known as crossover and mutation. Crossover operates by selecting a random location in the 
genetic string of the parents (crossover point) and concatenating the initial segment of one 
parent with the final segment of the second parent to create a new child. A second child 
is simultaneously generated using the remaining segments of the two parents. The string 
segments provided by each parent are the building blocks of the genetic algorithm. Mutation 
provides for occasional disturbances in the crossover operation by inverting one or more 
genetic elements during reproduction. This operation insures diversity in the genetic strings 
over long periods of time and prevents stagnation in the convergence of the optimization 

technique. 

The individuals in the population are typically represented using a binary notation to 
promote efficiency and application independence of the genetic operations. Holland [41] 
provides evidence that a binary coding of the genetic information may be the optimal 
representation. Other characteristics of the genetic operators remain implementation de- 
pendent, such as whether both of the new structures obtained from crossover are retained, 
whether the parents themselves survive, and which other knowledge structures are replaced 
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if the population size is to remain constant. In addition, issues such as the size of the 
population, crossover rate, mutation rate, generation gap, and selection strategy have been 
shown to affect the efficiency with which a genetic algorithm operates [34]. 

The inherent power of a genetic algorithm lies in its ability to exploit, in a highly efficient 
manner, information about a large number of individuals. By allocating more reproductive 
occurrences to above average individuals, the overall net affect is an upward shift in the 
population's average fitness. Since the overall average moves upward over time, the genetic 
algorithm is a "global force" which shifts attention to productive regions (groups of highly 
fit individuals) in the search space. However, since the population is distributed throughout 
the search space, genetic algorithms effectively minimize the problem of converging to local 
maxima. 

To date, genetic algorithms have been applied to a wide diversity of problems. They have 
been used in combinatorial optimization [35], gas pipeline operations [30, 32] and machine 
learning [42]. With regards to computer vision applications, Mandava et. al [51] have used 
genetic algorithms for image registration, Gillies [29], and Roth and Levine [77] for feature 
extraction, and Ravichandran [71] for object recognition. 

5.3     Genetic Learning for Adaptive Image Segmentation 

Genetic algorithms can be used in several different ways to provide an adaptive behavior 
within a computer vision system [12]. The simplest approach is to allow the genetic system 
to modify a set of control parameters that affect the output of an existing computer vision 
program. By monitoring the quality of the resulting program output, the genetic system 
can dynamically change the parameters to achieve the best performance. In this paper, we 
have adopted this strategy for adaptive image segmentation. 

The block diagram of our approach is shown in Fig. 2. After acquiring an input image, 
the system analyzes the image characteristics and passes this information, in conjunction 
with the observed external variables, to the genetic learning component. Using this data, 
the genetic learning system selects an appropriate parameter combination, which is passed 
to the image segmentation process. After the image has been segmented, the results are 
evaluated. If the quality of segmentation ("fitness") is acceptable, an update to long-term 
population is made. If the quality is unacceptable, the process of new parameter selection, 
segmentation and evaluation continues until a segmentation result of acceptable quality is 
produced, or the termination criteria are satisfied. 
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Figure 5.2: Adaptive image segmentation system. 

5.3.1    Image Characteristics 

A set of characteristics of the image is obtained by computing specific properties of the image 
itself as well as by observing the environmental conditions in which the image was acquired. 
Each type of information encapsulates knowledge that can be used to determine a set of 
appropriate starting points for the parameter adaptation process. For the experiments de- 
scribed here, we compute twelve first order properties for each color component (red, green, 
and blue) of the image. These features include mean, variance, skewness, kurtosis, energy, 
entropy, x intensity centroid, y intensity centroid, maximum peak height, maximum peak 
location, interval set score, and interval set size [46, 84]. The last two features measure 
histogram properties used directly by the PHOENIX segmentation algorithm used in this 
research and provide useful image similarity information. Since we use a gray scale image 
to compute edge information and object contrast during the evaluation process, we also 
compute the twelve features for the Y (luminance component) image as well. Combining 
the image characteristic data from these four components yields a list of 48 elements. In ad- 
dition, we utilize two external variables, time of day and weather conditions to characterize 
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Figure 5.3: Representation of a knowledge structure used by the genetic learning system. The 
image characteristics (image statistics and external variables), segmentation parameters, and the 
image quality or fitness of the parameter set are stored in each structure. 

each image. The external variables are represented symbolically in the list structure (e.g., 
time = 9am, 10am, etc. and weather conditions = sunny, cloudy, hazy, etc). The distances 
between these values are computed symbolically when measuring image similarity. The two 
external variables are added to the list to create an image characteristic list of 50 elements. 
The representation of an individual knowledge structure of the genetic population is shown 
in Fig. 3, where I is the number of image statistics, J is the number of external variables 
and N is the number of segmentation parameters. 

5.3.2     Genetic Learning System 

Once the image statistics and external variables have been obtained, the genetic learning 
component uses this information to select an initial set of segmentation algorithm param- 
eters. A knowledge-based system is used to represent the image characteristics and the 
associated segmentation parameters. The image statistics and external variables shown in 
Fig. 3 form the condition portion of the knowledge structure, C\ through CI+J, while the 
segmentation parameters indicate the actions, Ai through AN, of the knowledge structure. 
The fitness, W, which ranges in value from 0.0 to 1.0, measures the quality of the segmenta- 
tion parameter set. Note that only the fitness value and the action portion of the knowledge 
structure are subject to genetic adaptation; the conditions remain fixed for the life of the 
knowledge structure. 

When a new image is provided to the genetic learning system, the process begins by 
comparing the image characteristics of the new image (Fig. 2) with the knowledge struc- 
tures in the long-term population (also called global population, Fig.  3).  The long-term 
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population represents the accumulated knowledge of the adaptive system obtained through 
previous segmentation experience. The algorithm computes a ranked list of individuals in 
the population that have characteristics similar to the new image. Ranking is based on the 
normalized Euclidean distance between the image characteristic values as well as the fitness 
of the knowledge structure. The normalized distance between images A and B is computed 
using 

CiA — CiMIN CiB — CiMIN 
distAB = ]T) Wi 

»=i CiMAX - CiMIN       CiMAX ~ CiMIN 

where CiMIN is the minimum value of the ith numeric or symbolic feature in the global 
population, CiMAX is the maximum value of the ith feature in the global population, and 
Wi is the weight attached to the ith feature. For the results presented in this paper, the 
ranges are normalized and the Wi values have been set to 1 so that each feature contributes 
equally to the distance calculation. 

When the distance between an image and several members of the global population are 
the same (e.g., if a previous image contributed multiple individuals to the global population), 
fitness values are used to select the best individuals from the population. Temporary copies 
of the highest ranked individuals are used to create the initial or seed population for the 
new image. 

Once the initial or seed population is available, the genetic adaptation cycle begins. (The 
seed population is the same as the initial population, when the genetic algorithm begins its 
search operation.) The segmentation parameter set in each member of the seed population 
is used to process the image. The quality of the segmented results for each parameter 
set is then evaluated. If the maximum segmentation quality for the current population 
is above a predefined threshold of acceptance or other stopping criteria are satisfied, the 
cycle terminates and the high quality members of the current image population are used 
to update the global population. Less fit members of the global population are discarded 
in favor of higher strength individuals obtained from processing the current image. In this 
manner, the system is able to extend the knowledge of the adaptive segmentation system 
by incorporating new experience into the knowledge database. 

Alternatively, if after segmenting and evaluating the performance of the current or local 
(also called short-term) population, the system has not achieved acceptable segmentation 
quality and any other termination criteria are not satisfied, the genetic recombination op- 
erators are applied to the members of the current population. The crossover and mutation 
operators are applied to the high strength individuals in the population, creating a new set 
of offspring which will theoretically yield better performance [12, 41]. The new population 
is supplied back to the image segmentation process, where the cycle begins again. Each 
pass through the loop (segmentation-evaluation-recombination) is known as a generation. 
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The cycle shown continues until the maximum fitness achieved at the end of a generation 
exceeds some threshold or other termination criteria are satisfied. The global population is 
updated and the system is then ready to process a new image. 

5.3.3    Segmentation Algorithm 

Since we are working with color imagery in our experiments, we have selected the PHOENIX 
segmentation algorithm developed at Carnegie-Mellon University and SRI International [46, 
59, 84]. The PHOENIX algorithm is a recursive region splitting technique. An input image 
typically has red, green, and blue image planes, although monochrome images, texture 
planes, and other pixel-oriented data may also be used. Each of the data planes is called a 
feature or feature plane. The algorithm recursively splits nonuniform regions in the image 
into smaller subregions on the basis of a peak/valley analysis of the histograms of the red, 
green, and blue image components simultaneously. Segmentation begins with the entire 
image, considered to be a single region, based on histogram and spatial analyses. If the 
initial segmentation fails, the program terminates; otherwise, the program fetches each of 
the new regions in turn and attempts to segment them. This process terminates when 
the recursive segmentation reaches a predefined depth, or when all the regions have been 
segmented as finely as various user-specified parameters permit. 

PHOENIX contains seventeen different control parameters [46], fourteen of which are 
used to control the thresholds and termination conditions of the algorithm. There are about 
1040 conceivable parameter combinations using these fourteen values. For the outdoor image 
sequence that we have used, these parameters can be divided into three groups according 
to their effect on segmentation results. 

Group I: Essential PHOENIX Parameters. 

Parameter (default) Description Range 

Hsmooth (9) The width of the averaging window used to 
smooth each feature histogram. 

1-100 

Maxmin (160) The minimum acceptable ratio of apex height 
to higher shoulder. 

100-104 
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Group II: Important PHOENIX Parameters. 

Parameter (default) Description Range 

Absscore (70) The  lowest interval  set  score that will  be 
passed to the threshold phase. 

0 - 1000 

Splitmin (4) Direct   manipulation   of  the   segmentation 
queue, for which fetched regions are to be seg- 
mented further. 

1-200 

Noise (10) The size of the largest area that is to be con- 
sidered noise. 

0-104 

Height (20) The minimum acceptable apex height as a 
percentage of the second highest apex. 

0-100 

Group III: Less important PHOENIX parameters 

The rest of the parameters have relatively much less influence on the segmentation result. 

To minimize the problem complexity, four parameters have been selected for GA to 
search for the combination that gives best segmentation result using PHOENIX. Thirty 
two values are sampled for each of these four parameters. This results in a search space 
whose size is about one million. The parameters are shown in Table 1, together with the 
formula by which they are sampled, and the associated test range for each. In Section 4, 
we will present results using the first two parameters (hsmooth and maxmin). In Section 5, 
we show scaling results when we adapt all the four parameters. 

5.3.4    Segmentation Evaluation 

After the image segmentation process has been completed by the PHOENIX algorithm, we 
must measure the overall quality of the segmented image. There are a large number of 
segmentation quality measures [7] that have been developed in the past, although none has 
achieved widespread acceptance as a universal measure of segmentation quality. In order 
to overcome the drawbacks of using only a single quality measure, we have incorporated 
an evaluation technique that uses five different quality measures to determine the overall 
fitness for a particular parameter set. In the following, boundary pixels refer to the pixels 
along the borders of the segmented regions, while the edges obtained after applying an 
edge operator are called edge pixels. The five segmentation quality measures that we have 
selected are, 
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1. Edge-Border Coincidence: Measures the overlap of the region borders in the image 
acquired from the segmentation algorithm relative to the edges found using an edge 
operator. In this quality measure, we use the Sobel operator to compute the necessary 
edge information. The original, unthinned Sobel edge image is used to maximize 
overlap between the segmented image and the edge image. Edge-border coincidence 
is defined as follows (refer to Fig. 4(a)). 

Let E be the set of pixels extracted by the edge operator after thresholding and S 
be the set of pixels found on the region boundaries obtained from the segmentation 
algorithm: 

E = {PI,P2,---,PE} = {{xpi,ypi),{xP2,yP2),---,(xpE,ypE)}   and 

S = {qi,q2,---,Qs} = {(xqi,yqi),(xg2,yq2),---,{xqs,yqs},   then 

Edge-border Coincidence =        .^, 
n(E) 

EnS = {(xk,yk),k = 1, • • •,m, where(xy,yk) € E and S},    and 

n{A) = the number of elements in set A. 

2. Boundary Consistency: Similar to edge-border coincidence, except that region borders 
which do not exactly overlap edges can be matched with each other. In addition, region 
borders which do not match with any edges are used to penalize the segmentation 
quality. The Roberts edge operator is used to obtain the required edge information. 
As with the edge-border coincidence measure, the Roberts edge image is not thinned 
to maximize the overlap between images. Boundary consistency is computed in the 
following manner (see Fig. 4(b)). 

The first step is to find neighboring pixel pairs in the region boundary and edge results. 
For each pixel in the segmented image region boundary results, S, a neighboring pixel 
in the edge image, E, that is within a distance of dmax is sought. A reward for locating 
a neighbor of the ith boundary pixel is computed using 

Ri = 
"•max       Q-i — , 

""max 

where dmax = 10, and d{ = the distance to the nearest edge pixel. 

Thus, if the pixels had overlapped, Ri = (10 - 0)/10 = 1. Pixels that do not directly 
overlap contribute a reward value that is inversely related to their distance from each 
other. As matching pairs of pixels are identified, they are removed from the region 
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boundary and edge images (5 and E). The total reward for all matching pixel pairs 
is obtained using 

RTOTAL = X^ R* 
i 

Once all neighboring pixel pairs have been removed from E and 5, the remaining (i.e., 
non-overlapping and non-neighboring) pixels correspond to the difference between the 
two images. The average number of these pixels is used to compute a penalty 

»(all remaining pixels in E and S) 
P= - . 

Finally, since the value of boundary discrepancy must be positive, we define an inter- 
mediate value, M, as M = {RTOTAL - P)/n(E), then 

Boundary Consistency = M,   if M > 0,   and zero otherwise. 

3. Pixel Classification: This measure is based on the number of object pixels classified 
as background pixels and the number of background pixels classified as object pixels. 
Let G be the set of object pixels in the groundtruth image and R be the set of object 
pixels in the segmented image (see Fig. 4(c)). Formally, we have 

G = {PI,P2,---,PA} = {(xpi,ypi),{xp2,yP2),---AxpA,ypA)}   and 

R={qi,Q2,---, IB) = {(Xql, Vgl), (Xq2, Vq2), ' • ' i {XqB, VqB} ■ 

Since pixel classification must be positive, we define the intermediate value TV as 
follows 

N = 1 
(n(G) - n(G n R)) + (n(R) - n{G n R)) 

n{G) 

where Gf\R = {(xk,yk),k= l,---,m,   where (xk,yk) € G and R} 

Using the value of N, pixel classification can then be computed as 

Pixel Classification = N,    if N > 0,   and zero otherwise. 

4. Object Overlap: Measures the area of intersection between the object region in the 
groundtruth image and the segmented image, divided by the object region. As defined 
in the pixel classification quality measure, let G be the set of object pixels in the 
groundtruth image and R be the set of object pixels in the segmented image (Fig. 
4(d)). Object overlap can be computed as 

Object Overlap (Gnfi) 

where GC\R= {(xk,yk),k= l,---,m,    where  (xk, yk) € G and R} 
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5. Object Contrast: Measures the contrast between the object and the background in the 
segmented image, relative to the object contrast in the ground-truth image. Let G be 
the set of object pixels in the groundtruth image and R be the set of object pixels in 
the segmented image, as shown in Fig. 4(a). In addition, we define a bounding box (X 
and Y) for each object region in these images. These boxes are obtained by enlarging 
the size of the minimum bounding rectangle for each object (G and R) by 5 pixels on 
each side. The pixels in regions X and Y include all pixels inside these enlarged boxes 
with the exception of the pixels inside the G and R object regions. We compute the 
average intensity for each of the four regions (G, R, X, and Y) using the equation 
II = YJJ=\

X
 I{J)ILma.x, where I(j) is the intensity of the jth pixel in some region L 

and Lmax is the total number of pixels in region L. The contrast of the object in the 
groundtruth image, CGT, and the contrast of the object in the segmented image, Csi, 
can be computed using 

CGT = 
Ia-Ix 

la 
CSI = 

IR-IY 

IR 

The object contrast quality measure is then computed as 

Object Contrast   =    ——,    if CGT > Csi 
CGT 

CGT 

CSI 
,   if CGT < Csi- 

The maximum and minimum values for each of the five segmentation quality measures 
are 1.0 and 0.0, respectively. The first two quality measures are global measures since they 
evaluate the segmentation quality of the whole image with respect to edge information. 
Conversely, the last three quality measures are local measures since they only evaluate the 
segmentation quality for the object regions of interest in the image. When an object is 
broken up into smaller parts during the segmentation process, only the largest region which 
overlaps the actual object in the image is used in computing the local quality measures. 
In the experiments described in this chapter, we combine the five quality measures into a 
single, scalar measure of segmentation quality using a weighted sum approach. Each of the 
five measures is given equal weighting in the weighted sum. Elsewhere we have investigated 
a more complex vector evaluation approach that provides multidimensional feedback on 
segmentation quality [12, 13]. 
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5.4     Segmentation Results 

5.4.1     Segmentation Using Genetic Algorithm 

The adaptive image segmentation consists of the following steps: 

1. Compute the image statistics. 
2. Generate an initial population. 
3. Segment the image using initial parameters. 
4. Compute the segmentation quality measures. 
5. WHILE not < stopping conditions^ DO 
5a. select individuals using the reproduction operator 
5b. generate new population using the crossover 

and mutation operators 
5c. segment the image using new parameters 
5d. compute the segmentation quality measures 

END 
6. Update the knowledge base using the new knowledge structures. 

We have tested the performance of the adaptive image segmentation system on a time 
sequence of outdoor images. The outdoor image database consisted of twenty frames cap- 
tured using a JVC GXF700U color video camera. The images were collected approximately 
every 15 minutes over a 4 hour period. A representative subset of these images is shown in 
Fig. 5. The original images were digitized to be 480 X 480 pixels in size but were subse- 
quently subsampled (average of 4 x 4 pixel neighborhood) to produce 120 X 120 pixel images 
for the segmentation experiments. Weather conditions in our image database varied from 
bright sun to overcast skies. The changing environmental conditions caused by movement 
of the sun also created varying object highlights, moving shadows, and many subtle contrast 
changes between the objects in the image. Also, the colors of most objects in the image are 
subdued. The auto-iris mechanism in the camera was functioning, which causes a similar 
appearance of the background foliage throughout the image sequence. Even with the auto- 
iris capability built into the camera, there was still a wide variation in image characteristics 
across the image sequence. This variation required the use of an adaptive segmentation 
approach to compensate for these changes. 

The car in the image is the object of interest for the pixel classification, object overlap, 
and object contrast segmentation quality measures. The groundtruth image for the car was 
obtained by manual segmentation of Frame 1 only for the image sequence. The Sobel and 
Roberts edge operator results, which are used in the computation of the edge-border coin- 
cidence and boundary consistency measures respectively, are obtained from the gray scale 
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image (Y component of the YIQ image set) for each frame [14]. For the results presented 
in this section, the maxmin and hsmooth parameters of the PHOENIX algorithm were used 
to control the segmentation quality and the segmentation quality surfaces were defined for 
preselected ranges of these two parameters as shown in Table 1. All the parameters that 
were not optimized were set at the default PHOENIX parameter values. These parame- 
ters remain fixed throughout all the experiments. By selecting 32 discrete values (5 bits 
of resolution) for each of these parameter ranges, the search space contained 1024 different 
parameter combinations. Fig. 6 presents the five individual segmentation quality surfaces 
and the combined surface for Frame 1 of the database. Notice that the surfaces are complex 
and hence, would pose significant problems to traditional optimization techniques. 

The genetic component used a local or seed population size of 10, long-term population 
size of 100, a crossover rate of 0.8, and mutation rate of 0.01. A crossover rate of 0.8 
indicates that, on average, 8 out of 10 members of the population will be selected for 
recombination during each generation. The mutation rate of 0.01 implies that on average, 
1 out of 100 bits is mutated during the crossover operation to insure diversity in the local 
population. The stopping criterion for the genetic process contains three tests. First, since 
the global maximum for each segmentation quality surface was known a priori (the entire 
surface was precomputed to evaluate results), the first test is the location of a parameter 
combination that produces quality of 95% or higher. In experiments where the entire 
surface is not precomputed, this test would be discarded. Second, the process terminates 
if three consecutive generations produce a decrease in the average population fitness for 
the local population. Third, if five consecutive generations fail to produce a new maximum 
value for the average population fitness, the genetic process terminates. If any one of these 
three conditions is met, the processing of the current image is stopped and the maximum 
segmentation quality currently in the local population is reported. 

Numerous experiments [12, 14] were performed for training and testing to measure the 
optimization capabilities of the genetic algorithm and to evaluate the reduction in effort 
achieved by utilizing previous segmentation experience. In the following we present some 
of these results. 

5.4.2    Performance Comparison with Other Techniques 

Since there are no other known adaptive segmentation techniques with a learning capa- 
bility in both the computer vision and neural networks fields to compare our system with, 
we measured the performance of the adaptive image segmentation system relative to the 
set of default PHOENIX segmentation parameters [46, 84] and a traditional optimization 
approach. The default parameters have been suggested after extensive amounts of testing 
by researchers who developed the PHOENIX algorithm [46]. The parameters for the tra- 
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ditional approach are obtained by manually optimizing the segmentation algorithm on the 
first image in the database and then utilizing that parameter set for the remainder of the 
experiments. This approach to segmentation quality optimization is currently a standard 
practice in state-of-the-art computer vision systems. Fig. 7 illustrates the quality of the 
segmentation results for Frames 1 and 11 using the default parameters and the traditional 
approach and contrasts this performance with our adaptive segmentation technique. By 
comparing the extracted car region in each of these images, as well as the overall segmen- 
tation of the entire image, it is clear that the adaptive segmentation results are superior to 
the other methods. For the 20 frames the average segmentation quality for the adaptive 
segmentation technique is 95.8%. In contrast, the performance of the default parameters 
is only 55.6% while the traditional approach has a 63.2% accuracy. The size of the search 
space in these experiments is 1024, since each of the two PHOENIX parameters are repre- 
sented using 5 bits. The price paid for achieving consistent higher quality of segmentation 
is the average number of times (2.5) one has to go through the genetic loop. Thus, only 
2.4% of the search space is explored to achieve the global maximum. Many additional tests, 
including the comparison with random walk approach, are performed to demonstrate the 
effectiveness of the reproduction and crossover operators [12]. 

5.4.3    Demonstration of Learning Behavior 

The above experiments were conducted in a parallel fashion, i.e., all training and all testing 
was performed without the aid of previous segmentation experience. Although the testing 
experiments used the knowledge acquired during training, the tests were still performed 
in parallel. None of the segmentation experience obtained during testing was applied to 
subsequent testing images. The following multiple day experiment shows that experience 
can be used to improve the segmentation quality over time. The test simulates a four day 
scenario where the frequency of image acquisition decreases to approximately one hour. 
The order of the images in this test is 1, 5, 9, 12, 16, 20, 3, 7, 11, 14, 18, 2, 6, 10, 13, 17, 
4, 8, 15, 19. Each group of images in the sequence of Frames (1, 5, 9, 12, 16, 20), (3, 7, 11, 
14, 18), (2, 6, 10, 13, 17), or (4, 8, 15, 19) was designed to represent a collection of images 
acquired on a different day. 

The genetic population of the first frame in the image sequence was randomly selected. 
Once the segmentation performance for that frame was optimized by the genetic algorithm, 
the final population from that image was used to create the initial global population. This 
global population was then used to select the seed population for subsequent frames in 
the image sequence. The global population size was set to 100 for these experiments to 
insure a diversity of segmentation experience in the population. While the size of the 
global population remained below 100 members (prior to processing 10 frames), the final 
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populations for each image were merely added to the current global population. After 
the size of the global population reached 100 individuals, the final populations from each 
successive image had to compete with the current members of the global population. This 
competition was based on the fitness of the individuals; highly fit members of a new local 
population replaced less fit members of the global population, thus keeping the size of the 
global population constant. Fig. 8 presents the performance results achieved by the adaptive 
image segmentation system during each of the three sequential tests. The images in the 
first "day" (frames 1, 5, 9, 12, 16, 20) show a continually decreasing level of computational 
effort. When the second sequence (frames 3, 7, 11,14,18) is encountered, the effort increases 
temporarily as the adaptive process fills in the knowledge gaps present as a result of the 
differences between the images in each sequence. The image sequence for the third "day" 
(frames 2, 6, 10, 13, 17) was handled with almost no effort by the genetic learning. Finally, 
the fourth image sequence (frames 4, 8, 15, 19) requires no effort by the genetic learning at 
all; each image is optimized by the information stored in the global population. Twelve of 
the twenty frames in this test were optimized using the global population. 

5.5     Scaling the Number of Parameters 

For the results presented in Section 4, we selected only two (hsmooth and maxmin) pa- 
rameters of the PHOENIX algorithm. In this section, we present details when we select 
four parameters [hsmooth, maxmin, splitmin and height) for adaptive image segmentation. 
In this case the size of the search space is about 1 million. Table 1 shows the parameter 
values. As the number of segmentation parameters for adaptation increases, the number 
of points to be visited on the surface will also increase. However, genetic algorithms offer 
a number of advantages over other search techniques. These include parallel search from 
a set of points with the expectation of achieving the global maximum. Unlike the Hough 
transform, which is essentially an exhaustive search technique commonly used in Computer 
Vision, it is expected that the genetic algorithm will visit only a small percentage of the 
search space to find an adequate solution that is sufficiently close to the global maximum. 

5.5.1     Search Space and GA Control Mechanism 

Visualization of the Search Space: Visualization of the search space allows one to 
understand its complexity—the number and distribution of local peaks and the location of 
global maximum. But this 5-dimensional space (four parameters plus the fitness or quality 
of image segmentation) is difficult to be visualized with traditional methods. So we project 
this 5-dimensional data into a 4-dimensional space by slicing it into 32 pieces along the 
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Height axis. Fig. 9 shows the 3-D volume representation of this 4-dimensional data using 
the brick and slice visualization technique, where the x,y,z axes are maxmin, hsmooth, 
and splitmin respectively, and the color associated with each point represents the combined 
segmentation quality for a given parameter set. Blue color represents segmentation quality 
of 0, while the red color represents 100% quality. 

GA Control Mechanism: GA learning requires 3 operations: selection, crossover, and 
mutation. In our approach, a chromosome is formed by combining the 4 segmentation 
parameters together. Using our method of crossover point selection, the ordering of these 
parameters within the chromosome does not affect the search process. Tests are carried 
out to select the best control parameters for GA, which include the number of crossover 
points, crossover rate, method of selection, population size, and quality threshold. The 
results given below are averaged over 1000 independent tests. 

Crossover Rate: Table 2 shows the number of segmentations that are needed for frame 
1 for different crossover rates. The threshold for minimum acceptable segmentation quality 
is 95%, population size varies from 50 to 200. We can see that a lower crossover rate leads 
to smaller number of total segmentations. 

Population Size and Number of Crossover Points: Table 3 shows the number of 
segmentations required for different population sizes and crossover points. The threshold 
for acceptance of segmentation quality is 95% and the crossover rate is set at 80%. From 
the results we can see that using more crossover points and larger population size, the total 
number of required segmentations can be reduced. This experiment also showed that the 
total number of segmentations will not reduce further when population size is greater than 
500. A complete scenario for crossover operation using four points is shown in Fig. 10. 

Segmentation Quality Threshold: Table 4 shows how different thresholds for mini- 
mum acceptable segmentation quality affect the total number of required segmentations. 
The difference is not significant between 90% and 95% because these segmentation qualities 
are quite close. 

The results presented for Frame 1 in Tables 2-4 show that the number of points that are 
visited on the surface varies from 0.9% to 0.3% for 95% quality of segmentation. In the best 
case only 0.28% of the search space is visited to achieve 99.89% (threshold is 95%) quality 
of segmentation. 
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5.5.2    Genetic Algorithms and Hill Climbing 

Integrated search techniques have the potential for improved performance over single opti- 
mization techniques since these can exploit the strengths of the individual approaches in a 
cooperative manner [1, 13]. One such scheme which we describe in this section combines a 
global search technique (genetic algorithms) with a specialized local search technique (hill 
climbing). Hill climbing methods are not suitable for optimization of multimodal objective 
functions, such as the segmentation quality surfaces, since they only lead to local extrema. 
The integrated scheme provides performance improvements over the genetic algorithm alone 
by taking advantage of both the genetic algorithm's global search ability and the hill climb- 
ing's local convergence ability. In a sense, the genetic algorithm first finds the hills and the 
hill climber climbs them. 

The search through a space of parameter values using hill climbing consists of the follow- 
ing steps: (1) Select a starting point; (2) Take a step in each of the fixed set of directions; 
(3) Move to the best alternative found; and (4) Repeat until a point is reached that is higher 
than all of its adjacent points. An algorithmic description of the hill climbing process is 
given below. 
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Table 5.1: PHOENIX parameters used for adaptive image segmentation. 

Parameter Sampling Formula Test Range 

Hsmooth: 

hsindex G [0 : 31] 

hsmooth = 1 + 2 • hsindex 1 — 63 

Maxmin: 

mmindex G [0 : 31] 

ep = log(100) + 0.05 • mmindex 

maxmin = exp(ep) + 0.5 

100 — 471 

Splitmin: 

smindex € [0 : 31] 

splitmin = 9 + 2 • smindex 9 — 71 

Height: 

htindex G [0 : 31] 

height = 4 + 2 • htindex 4 — 66 

Table 5.2: Number of segmentations under varying population size and crossover rate. The thresh- 
old for minimum acceptable segmentation quality was set at 95%. 

Population Crossover Rate 2-Point Crossover 

50 80% 9439 

50% 6077 

100 80% 5805 

50% 4675 

200 80% 7548 

50% 5068 
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Figure 5.4: Illustration for the quality measures used in the adaptive image segmentation system, 
(a) Edge-border coincidence, (b) Boundary consistency, (c) Pixel classification, (d) Object overlap. 
Object contrast is defined by using the symbols shown in the center figure in (a) and the left most 
figure in (c). 
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(a) Frame 1 (b) Frame 11 

Figure 5.5: Sample outdoor images used for adaptive segmentation experiments. 

Table 5.3: Number of segmentations under varying population size and crossover points (Segmen- 
tation quality threshold = 95% , Crossover rate = 80% ). 

Population 1-Point Crossover 2-Point Crossover 4-Point Crossover 

10 7102 6553 5941 

100 4960 5805 5528 

200 4131 3939 3900 

500 3575 3332 2878 

Table 5.4: Number of segmentations under varying threshold (Population = 500, Crossover rate 

80% ). 

Threshold 1-Point Crossover 2-Point Crossover 4-Point Crossover 

95% 3575 3332 2878 

90% 2943 2788 2325 
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Figure 5.6: Segmentation quality surfaces for Frame 1. (a) Edge-border Coincidence, (b) Bound- 
ary Consistency, (c) Pixel Classification, (d) Object Overlap, (e) Object Contrast, (f) Combined 
Segmentation Quality. 
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Figure 5.7: Segmentation of Frame 1 (a-c) and Frame 11 (d-f) for the adaptive technique, default 
parameters, and the traditional approach. 
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Figure 5.8: Performance of the adaptive image segmentation system for a multiple day sequential 
test. 

splitmin 

maxmin 

(a) Projection with height = 10 (b) Coordinate axes 

Figure 5.9: Volume representation of segmentation parameter search space, (a) The original 5- 
dimensional data (hsmooth, splitmin, maxmin, height, segmentation quality) is projected along 
height axis, where the color represents the fitness or segmentation quality value, (b) The coordinate 
system. 
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Figure 5.10: Genetic algorithm crossover operation, (a) Scheme for doing 4-point crossover with 
each chromosome containing four parameters, (b) A complete scenario for one crossover operation. 
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la. Select a point xc at random. 
lb. Evaluate the criterion function, i.e., obtain V(xc). 
2a. Identify points xi,- ■ -,xn adjacent to xc. 
2b. Evaluate the criterion function, i.e., obtain V{x\), • • •, V(xn). 
3. Let V(xm) be the maximum of V{x{) for i = 1, • • •, n. 
3a. If V{xm) > V(xc) then 

set xc = xm, V(xc) = V(xm). 
goto Step 2. 

3b. Otherwise, stop. 

In this algorithm, a set of points that are "adjacent" to a certain point can be defined 
in two ways. First, it can denote the set of points that are a Euclidean distance apart 
from the given point. Thus, the adjacent points are located in the neighborhood of the 
given point. Second, "adjacent" points can denote the set of points that are unit Hamming 
distance apart from the given point pair. Each point in this set differs by only one bit value 
from the given point in binary representation of points. It defines the set of points with 
varying step size from the given point. The set of Hamming adjacent points was used in 
this research. Hamming adjacent points have an advantage over Euclidean adjacent points 
in our implementation because all the segmentation parameter values are represented as 
binary strings when using the GA. The set of Hamming adjacent points also represents the 
set of points which can be generated by a genetic mutation operator from the given point. 

A conventional hill climbing approach, as described above, finds the largest V(xm) from 
V(xi),i = 1, • • -,n, and the search moves to its corresponding point, xm. For a space of n 
adjacent points, it requires n function evaluations to make each move. To reduce the cost of 
evaluating all the adjacent points before making each move, the approach is designed to try 
alternatives only until an uphill move is found. The first uphill move is undertaken without 
checking whether there are other (higher) possible moves. After the hill climbing process 
has examined all the adjacent points by flipping each bit in the binary representation of 
the current point, in turn, without finding an uphill move, the current point is taken as a 
local maximum. The algorithmic description of the hill climbing process used in the search 
scheme is as follows: 

1- Select a starting point xc with fitness value V(xc) from the 
genetic population. 

2. Set i = 0. 
3. Set j = i. 
4a. Generate an adjacent point xa by flipping the ith bit in xc. 
4b. Obtain V{xa). Set i = (i + 1) mod n. 
5. If V(xa) >V(xc) then 
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goto Step 3. 
Else if i < j then 

goto Step 4. 
Otherwise, pass the control to the GA. 

5.5.3    Experimental Results 

There are several possibilities in which genetic algorithms and hill climbing can be used. 
In one case the control moves back and forth between GA and hill climbing [12, 13]. In 
this approach when GA finds a new maximum, hill climbing is used to keep climbing until 
local maximum or termination condition is satisfied. If a local maximum is found then GA 
is again used to find a new maximum. For the experiments presented in this Chapter this 
approach is used for the first frame only. Specifically, the integrated technique used is given 

below: 

1. Perform GA and hill climbing search for frame 1 using a population size of 10 (cho- 
sen from available hardware consideration) and 4 point crossover operation with a 
crossover rate of 0.8 (same as in Section 4). The goal here is to use small popu- 
lation size to achieve the desired segmentation quality with a minimum number of 
segmentations. 

2. For frame 2 to frame 20 perform hill climbing with accumulated knowledge structures. 
The parameter set generated from previous frames is used to hill climb. The best result 
obtained for the current frame is kept as a new knowledge structure and added to the 
parameter set for hill climbing for the next frame. 

After we are done with frame 20, a total of 29 knowledge structures are accumulated, with 
19 of them generated by hill climbing. 

The experimental results for frame 1 are shown in Table 5. The results show that for 
95% threshold for image segmentation quality, the technique helps to reduce the required 
number of segmentations by almost half. For low segmentation quality threshold (90%), 
this effect is not dramatic. 

Fig. 11 summarizes the performance of the technique for frames 1 to 20, and compares 
it with the performance of the default parameter set of the PHOENIX algorithm [46]. 
The performance corresponds to the parameter set in the population that has the highest 
fitness. The average performance improvement for the technique over the default parameter 
set is about 50%, performance improvement over the technique that uses the parameter set 
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Table 5.5: Performance comparison between pure GA and GA with hill climbing (crossover points 
= 4, crossover rate = 80%, mutation rate » 1%). 

Population = 10 Genetic w/o hill climbing Genetic with hill climbing 

Threshold = 95% 

Threshold = 90% 

5941 

1720 

3340 

1631 

generated by GA plus hill climbing learning for frame 1 only (no subsequent hill climbing) 
is also significant. This shows that learning from frame 1 does provide a good starting 
point for hill climbing for subsequent frames. The maximum improvement over the default 
parameter set shown in Fig. 11 is 107.8%. 

Fig. 12 shows the sample segmentation results obtained by using the default parameter 
set and the parameter set generated by the technique. Using the default parameter set, it 
is seen that the car does not show up at all in the segmentation result of frame 16, but the 
corresponding result using GA and hill climbing is quite good. The overall results show that 
by combining genetic search and hill climbing techniques the performance improvement is 
significant when the search space is large. 

5.6    Conclusions 

The goal of this research was to perform adaptive image segmentation and evaluate the 
convergence properties of the closed-loop system using outdoor data. In this Chapter we 
have provided sample results. Using the outdoor data we have shown in [12, 13, 14] that the 
performance improvement provided by the adaptive system was consistently greater than 
30% over the traditional approach or the default segmentation parameters [46, 84]. 

The adaptive image segmentation system can make use of any segmentation technique 
that can be controlled through parameter changes. The adaptive segmentation system is 
only as robust as the segmentation algorithm that is employed. It may be possible to keep 
multiple segmentation algorithms available and let the genetic process itself dynamically 
select the appropriate algorithm based on image characteristics. Further, it is possible to 
define various evaluation criteria which can be automatically selected and optimized in a 
complete vision system. In a complete computer vision system, the segmentation evaluation 
component can be replaced by the object recognition component(for example, see [64]). In 
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Figure 5.11: Performance comparison for techniques based on (a) default parameters (+), (b) 
GA plus hill climbing to generate the best parameter set for frame 1 only (*), and (c) integrated 
technique, (parameter set generated for frame 1 in the same manner as in (b) and hill climbing for 
all subsequent frames (o)). 

our adaptive image segmentation system, the focus is the image segmentation component. 
Therefore, we supplied the manually generated groundtruth image to the segmentation 
evaluation component and used local and global measures. Elsewhere, we have optimized 
both global and local measures in a multi-objective optimization framework [13]. In the 
future we plan to use a data set with dramatic environmental variations and we will utilize 
several segmentation algorithms. Ultimately, we will incorporate the adaptive segmentation 
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component into a learning integrated object recognition system. 
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Figure 5.12: Segmentation performance comparison using default and learned parameters, (a) and 
(b) Frame2, (c) and (d) Frame 3, (e) and (f) Frame 16. 
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Chapter 6 

Integrating Context with Clutter 
Models for Target Detection 

For an automatic target detection and recognition (ATD/R) system operating in a cluttered 
environment, it is important to develop models not only for man-made targets but also for 
various background clutters. Because of the high complexity of natural backgrounds, our 
approach to build the clutter models is based on learning from real examples. The contextual 
parameters, which describe the environmental conditions for each training example, are used 
in a reinforcement learning paradigm to improve the learned clutter models and enhance 
target detection performance under multi-scenario situations. We present experimental 
results using second generation infrared imagery. 

6.1    Introduction 

Automatic Target Detection/Recognition (ATD/R) is a challenging application for the gen- 
eral techniques developed by image understanding communities [11]. There are several 
reasons that contribute to this challenge: (a) a target may appear in many different back- 
grounds and it tends to be mixed up with its surroundings, (b) signatures of a target 
strongly depends upon the background surrounding the target and environmental condi- 
tions, and (c) signatures of a target are generally not repeatable. As a result, early stage 
image segmentation for extracting the target from the background is generally unreliable. 
Since the ATD/R algorithms are commonly used in a sequential manner, any target we fail 
to detect during the detection stage will be lost forever. In the detection stage, it is desired 
to single out every suspicious target area (region-of-interest) in the image, even at the cost 
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that it may include some false target areas. Then it is the responsibility of the following 
recognition stage to verify the identity of each real target and to filter out the false targets. 
An ideal ATD/R system is the one that (1) does not miss any potential target area in the 
detection stage, and (2) does not verify any non-target area as target in the recognition 
stage. 

To achieve the goal of high detection probability and simultaneous low false-alarm rate, 
we have developed an ATD/R strategy called Background Model Aided Target Detection 
and Recognition (BMATDR). The main idea of BMATDR is to use explicit background 
clutter models, as well as target models, throughout the ATD/R process. The clutter 
models are represented by a bank of statistical models that are constructed using various 
multiresolution and other image feature groups through a self-organizing learning process 
[74, 75]. Although these statistical models characterize the background clutter using a 
variety of information present in a training image, they do not utilize any non-imagery 
contextual information associated with each training image. Because we want to successfully 
detect targets under multi-scenario situations, and the image metrics commonly used to 
characterize images do not correlate well with performance of an ATD/R system, it is 
essential to integrate the contextual information with clutter models for target detection. 
In this paper, we present a reinforcement learning based approach that improves the target 
detection performance of background clutter models by using the non-imagery information. 
The non-imagery contextual information accompanying a training image is represented by 
a set of context parameters, and a certain setting of these contextual parameters is referred 
to as a contextual condition. We present results using 40 second generation infrared images. 

6.2    Learning Background Models via Self-Organizing 
Maps 

In recent years, two streams of approaches have been developed by ATR researchers to 
characterize the natural background in infrared images. The first one is using heat transfer 
equations to model the thermal behaviors of different materials. The second stream of 
approaches focuses on the image features rather than the thermal-physical meaning behind 
these images. In our previous work, we followed the second approach, and developed a image 
feature-based background clutter modeling system [74]. Several image feature groups were 
developed based on multiresolution analysis and local geometric analysis [9]. All the image 
features developed are computed from rectangular regions in an image, which we refer to 
as feature cells. Based on each feature group, which consists of not more than three feature 
values, a statistical model was learned from training images and represented by a 2D self- 
organizing map [75]. 

103 



Target 
Verification 

K Potential \*_/^Y^>U 
Target Area/^^jZ8.^ 

Figure 6.1: Learning background clutter models for target detection. 

Since natural backgrounds can occur in a wide variety, background characterization 
must rely on multiple features. To efficiently use the available features, we need a proper 
representation to hold all the information together. One way to attack such a problem is 
to organize all the features into a high dimensional feature vector (i.e. long feature vector) 
and classify the backgrounds based on the position of the vector in some high dimensional 
feature space. The other way is based on short feature vectors. The key ideas behind 
this later scheme are: we need to understand the physical meaning of each feature and 
put each feature in a group of features that have closely related physical meanings. For 
a given background we will have a collection of simple (i.e. low dimensional) models. We 
refer to such a collection of models as a Background Model Bank (BMB), and each model 
in this bank as a BMB member (SOM-1, • • •, SOM-n in Figure 6.1), In the following 
discussions, background model and clutter model will be used interchangeably to refer to a 
BMB member. 

6.3    The Classification Criterion 

Since the target detection process has been formulated as a 2-class classification problem 
(natural background vs. man-made target) in our approach, a classification criterion is 
needed to label a testing feature cell according to the learned background model. The 
criterion used in our experiments is based on the computation of two confidence values: 
Confß, the confidence value for a testing feature cell to be background and Confr, the 
confidence value for it to be man-made target. These two confidence values are computed by 
comparing the Four Neighbor Average Distance (FNAD) of a testing feature cell to Rp which 
is the average FNAD of all the positive training examples, and R^ which is the average 
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FNAD of all the negative training examples. To compute the FNAD of a feature cell, 
the feature vector is first projected into the learned background model which is represented 
by a self-organizing map. The hitting neuron is found next, and the four neighbors of this 
hitting neuron are identified. The FNAD can then be calculated according to 

FNAD = ^=LH (6.1) 
4 

where r,- is the Euclidean distance between the testing feature vector and one of the 4- 
Neighbor neurons. Figure 6.2 shows the projection of the testing feature vector into the 
background model SOM. From Equation (6.1) we have 

*"   = AN?  ' (6-2) 

RN   =   ^n=\^i=1 ' (6-3) 

where Np is the number of positive training examples used in constructing the background 
model, and NN is the number of near-misses used. The two confidence values are 

ConfB   =   maxfl,-^-) (6.4) 

ConfT   =   maxll,^g-ll (6.5) 

Given ConfB and Con fa, the classification of the testing feature cell is obtained as, 

_ J  Background   if Confß > Confy /fi ^N 

~ \ Target Otherwise ( ' ' 

The classification confidence Cc is assigned the value of Confs or Confr accordingly. 

6.4    Reinforcement of Clutter Models Using Contextual 
Information 

It can be imagined that different features may have different sensitivities to a certain contex- 
tual parameter, e.g. in FLIR images, the mean and standard deviation of image gray values 
are more sensitive to the air temperature than the Gabor transform amplitude features [74] 
which tend to find out periodic patterns within a local image region.   To be practically 
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Figure 6.2: Projecting a testing feature vector into a clutter model. 

applicable, an ATD/R system must be able to detect targets under different contextual 
conditions, i.e. under multi-scenario situations. One way to achieve this goal is to use a 
learning technique to associate contextual parameters with the performance of each feature 
group in the background model bank. The rationale behind this association is that if a 
feature group can effectively detect man-made objects under a given contextual condition, 
then it tends to be effective for images taken under similar contextual conditions. Since 
a human supervisor cannot provide any assistance to the ATD/R system in finding this 
association, except telling the system whether it is doing a "good job" with respect to a 
specific testing image, the most suitable learning technique for this task is the reinforcement 
learning scheme. Figure 6.3 shows how this reinforcement learning subsystem fits into the 
background modeling process. 

If a feature group has a good performance under a certain contextual condition, its 
detection result deserves a larger weight in the background model bank under similar con- 
textual conditions. In other words, the context - performance relationship can be replaced 
by a context - weight relationship, which is more compliant for being integrated into an 
automatic learning system. To facilitate the discussion, we first define the following terms, 
which will be used to formulate the following stochastic reinforcement learning algorithm. 
The superscript i(i = 1,2, • • •, nc) refers to the i-th contextual parameter available to our 
BMATDR system. The subscript j(j = 1, 2, • • •, np) refers to the j-th feature group in the 
background model bank. 

• Contextual Parameter (c1) is a scalar that quantifies a specific aspect of a contextual 
condition, it can be defined over continuous or discrete values. 

• Contextual vector (C) is a vector with each element being c1, a contextual parameter. 

• Weight Vector (W) is a real value vector with each element being Wj, the weight of 
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Figure 6.3: Context reinforced clutter modeling process. 

the j-th feature group. 

Our learning problem can then be defined as: Given a set of training images that cover the 
entire range of available contextual parameters, with the background model bank having 
been built as a collection of SOM's, associate with each BMB member SOMj a stochastic 
transform function Tj, such that Wj = Tj(C). Tj is stochastic because the Context(C) 
- Weight(W) relationship cannot be described by a deterministic function, and there are 
always exceptional cases due to the high complexity of the real world. 

6.4.1    Stochastic Reinforcement Learning Algorithm 

The reinforcement learning algorithm we selected for learning the context - performance 
relationship of each BMB member is shown in Figure 6.4. It is based on the stochastic 
real valued reinforcement learning algorithm, which is developed by Gullapalli for training 
a single actor using reinforcement as feedback [36, 37]. This algorithm allows the system 
to learn outputs that take on real values. Since the performance of a feature group is best 
described as a real number, normally between 0 and 1, with 1(0) representing the best 
(worst) performance, this algorithm meets our requirement very well. However, since we 
want to use this algorithm to cooperate the actions of np BMB members to achieve a better 
performance in target detection, we need to make changes to the algorithm, so that it can 
handle multiple actors. 
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In the stochastic reinforcement learning algorithm, Tj is implemented as a random num- 
ber generator according to the normal distribution. The mean fij, and standard deviation 
Gj are determined by two internal vectors, $j and tyj according to the following formula: 

H,n = *},« • Cn (6.7) 

where n denotes the n-th iteration of the learning process. 

o» = 1 - rj,„ (6.8) 

where fjyTl is the estimated reinforcement feedback for the j-th feature group after n itera- 
tions of learning. It can be estimated using the following formula: 

fiin = l-/(*;..Cn) (6.9) 

where function /(•) often takes the form of 

which maps the real line onto the interval (0,1). Once the two parameters (/J,J,<TJ) are 
available, the weight for the j-th feature group can be computed by passing \ij and Oj to a 
random number generator: 

WJ~N(HJ,<TJ) (6.11) 

So, in the learning system, each context-to-weight transform function Tj is actually "remem- 
bered" as two internal vectors, <&j and ^j. Starting with randomly selected initial values, 
these two internal vectors learn to represent the Context(C) - Weight(W) relationship by 
updating themselves according to the following formula. 

*i,n+l = *j,n + «'»fan ~ ^,n) (wj,n - Pj,n)Cn (6.12) 

^,„+1 = *i>n + Pn{rjtn - rj,n)Cn (6.13) 

where 
ri,n = 9\"j,n) 

is the reinforcement provided by a critic function g(-) for the the j-th feature group in the 
n-th detection trial. Vector P is the vector for the detection result. It can be used by the 
critic to judge the performance of the system after the detection trial. Figure 6.4 shows the 
data flow path of the modified stochastic reinforcement learning algorithm. Gullapalli has 
provided a convergence proof of the single actor reinforcement learning algorithm [37]. The 
convergence of the multiple actor case still lacks a proof, it is one of our future research 
topic. 

108 



W0RLD(c,,O     >-!..«, 

Context Vector:   C.«/!' 
Performance Vector: P,J,=ll„-Lt» 

Detection Algorithm O 

Bxifj.-lf,, 

; = l,..,n. 

—cTite— 

Jt-I 

;'=i ", 

?,W0*"C.)   f^=-^p    °,*^-h. 

«■„.-wirV/..) 

Norm* Izatton 

Figure 6.4: The stochastic reinforcement learning algorithm. 

6.4.2    Implementation Concerns 

To utilize this complex learning scheme to solve the previously defined Context(C) - Weight(W) 
problem, we have to make several implementation decisions: 

1. Selection of contextual parameters: 
For infrared images, There are many contextual parameters available. Sherman et 
al. categorized 41 such parameters into five classes — background parameters, target 
parameters, platform dynamics, atmospherics and sensor parameters [86]. Obviously, 
it is difficult to deal with 41 contextual parameters at the same time without organiz- 
ing context in some hierarchical manner. One simple practical approach is to select a 
subset of important contextual parameters from the available context. In our imple- 
mentation, we selected 4 parameters to form the contextual vector. These parameters 
are: 

• t : Time of the day. 

• d : Depression angle. 

• s : Range to the target. 
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• p : Air temperature. 

In order to make the inner product in equations (6.7) and ( 6.8) meaningful, we used 
relative values of the contextual parameters in constructing the contextual vector. The 
relative value of d, for example, is 3 ^d  ,  , where dmax and dTO,-n are the maximum 
and minimum depression angle encountered in the training images. 

2. Performance vector P: 
Since all our features [74] are region based features, given a testing image, the image is 
first divided into feature cells based on the range-to-target information. The detection 
result is a label vector 1, with each of its element being the label of a feature cell. The 
label of the top-left feature cell is the first element in 1, and the label of rest feature 
cells are entered in a row-first manner. The easiest way to describe the performance of 
the detection is to compare 1 with the label vector L given by the learning supervisor. 
Thus, the performance vector P can simply be P = 1 — L. 

3. Selection of the critic function: 
Since we are dealing with a two class classification problem, both 1 and L can be a bit 
vector. A simple metric for the detection performance is obtained by examining the 
number of bits being set to 1 in P. So, the reinforcement feedback can be computed 
as follows: 

Nb 

where Nb is the total number of feature cells within the testing image. ph- denotes 
the k-th element of vector PJ?n which, in turn, describes the performance of the j-th 
feature group in the n-th detection trial. 

6.5    Experimental Results 

In this experiment, we compare the detection performances of two background model banks 
learned by using our near-miss injection SOM algorithm [75] and 40 FLIR images (20 images 
for training and the other 20 for testing). Two sample images are.shown in Figure 6.5. In 
the first background model bank, no contextual information is involved. Thus all the BMB 
members (each represented by a 5 x 5 self-organizing map) in the background model bank 
are treated as equally important. Since we have five BMB members in our background 
model bank, the weight of each BMB member is 0.2. The second background model bank 
contains the same BMB members that constitute the first background model bank. In 
addition, contextual information is used to reinforce this background model bank.   By 
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(a) 09p3sa6rJ0h (b) 09p3sa6r_2/j 

Figure 6.5: Two examples of the 40 FLIR images used in our experiments. 

applying the stochastic reinforcement learning algorithm given in Section 6.4.1 for 200 
iterations, a relationship is set up between the importance of each BMB member and the 
underlying contextual condition. This relationship is represented by the two internal vectors 
$ and \P associated with each BMB member. 

After the construction of these two background model banks, another 20 second genera- 
tion FLIR images are used as testing images. For each testing image, an accompanied image 
is built by removing rows and columns, equal to one-half the size of the selected feature 
cell, from all the four sides. By using the first background model bank and the classifica- 
tion criterion given in Section 6.3, out of the 217 feature cells in the 20 testing images, we 
achieved a 100% detection rate and a 12% false alarm. These 20 testing images and their 
accompanied images are then classified by using the second background model bank. The 
detection rate obtained is 100% and false alarm decreased by 2%. The detection confidence 
values of the correctly classified feature cells in both experiments are shown in Figure 6.6(a). 
Figure 6.6(b) shows the confidence values of the misclassified feature cells in both experi- 
ments. From these two figures we can see that by reinforcing the background model bank 
using contextual information, the confidence values of the correctly classified feature cells 
increase, and the confidence values of the misclassified feature cells decrease. The final 
effect is an improved detection performance. In Figure 6.6(c), the result is presented in 
a different way. The confidence values of the misclassified feature cells are represented by 
negative values, as before, the confidence values of the correctly classified feature cells are 
still represented as positive values. It can be seen that the context reinforced background 
model makes the curve of confidence values shifting upward, which produces a better de- 
tection result. We expect that further reduction in false alarms are possible by increasing 
the size of the training image set, which would expose the background model bank to more 
contextual conditions.  In our experiments, because of the availability of experimental im- 
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Figure 6.6: The improved detection performance after context reinforcement of the background 
model. Dashed lines show results of the background model bank not reinforced by the contextual 
information. Solid lines represent results of the context reinforced background model bank, (a) 
correctly classified feature cells (b) misclassified feature cells (c) all the feature cells in the testing 
images. 

ages, the contextual conditions of some testing images are apparently different from those 
of the training images. This has limited the reduction in false alarms in our experiment. 

6.6    Conclusions 

By introducing learning capabilities into an ATD/R system, we can build a model for the 
complex natural background from real images and improve it as the system is trained with 
more examples. Contextual parameters which hold non-imagery information of the training 
examples are used to enhance the background models. Future work will concentrate on the 
convergence of the stochastic reinforcement learning algorithm for multi-actor cases and 
applying our approach to other sensory data. 
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Chapter 7 

Performance Improvement by 
Input Adaptation 

This paper focuses on developing self-adapting automatic object detection systems to achieve 
robust performance. Two general methodologies for performance improvement are first in- 
troduced. They are based on optimization of parameters of an algorithm and adaptation 
of the input to an algorithm. Different modified Hebbian learning rules are used to build 
adaptive feature extractors which transform the input data into a desired form for a given 
object detection algorithm. To show its feasibility, input adaptors for object detection are 
designed and tested using multisensor data including SAR, FLIR, and color images. Test 
results are presented and discussed in the paper. 

7.1    Introduction 

Automatic object detection is of great importance for many vision based real-world appli- 
cations. An automatic object detection system should be able to locate objects of interest 
in the input images produced by different sensors such as CCD cameras, infrared sensors, 
radars and multispectral scanners. Although many automatic object detection systems 
have been developed, their performance is still limited [96]. This paper is motivated by 
the increased demand for new theories and methodologies to improve system performance 
[38, 96, 98] and to minimize the effort needed for the development of robust object detec- 
tion systems. The original contribution of this paper is the idea that the performance of 
a given algorithm can be improved by adding an adaptor between the input data and the 
algorithm.   This is an input adaptive process and is based on the observation that most 
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Figure 7.1: Parameter optimizing methodology for performance improvement. 

algorithms would perform well if the desired input data can be provided to them. Different 
kinds of Hebbian-like learning rules are introduced and applied to developing such adap- 
tors. The feasibility of this methodology for performance improvement is demonstrated by 
experimental results using multisensor data. 

7.2     Parameter Optimization Versus Input Adaptation for 
Performance Improvements 

The first methodology is based on the consideration that some algorithms and systems have 
certain controllability and their performance can be improved by tuning their parameters 
[12]. To find the best parameter set for the given input data a learning and optimizing pro- 
cess is usually required. This methodology is, therefore, parameter optimizing oriented. As 
shown in Figure 7.1, parameter optimizing based methodology employs different parameter 
set for different input data in order to obtain the optimal output. However, this methodol- 
ogy suffers from some inherent shortcomings: (a) It is driven by both the input data and 
the output data. It has to have an off-line learning phase. This leads to the difficulty of 
sample collection because some input situations are not predictable. Besides, the off-line 
learning process is usually time consuming, (b) In order to use the trained algorithm, in- 
formation about the possible category of the input data is needed before the appropriate 
parameter set can be switched on. This means that the trained algorithm works only with 
an additional input identifier which triggers the corresponding parameter set. Certainly the 
design of such an identifier is as hard as that of the algorithm itself, (c) The performance 
of an algorithm cannot be always improved by optimizing the parameter set because the 
gradients of objective functions of some algorithms with respect to their parameters are too 
small. So not all algorithms can be improved by using this methodology. 

The second methodology for performance improvement is based on the observation that 
most algorithms would perform well if their input data are "friendly", as discussed above. 
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Thus, the performance of almost all commonly used algorithms can be improved by adding 
an adaptor between the input data and the algorithm (see Figure 7.2). An ideal adaptor 
should automatically judge the input data, provide the desired input data to an algorithm, 
and learn something from this process in order to improve itself in the future. 

In comparison with the parameter optimizing based methodology, the input adapting 
methodology presented in this papaer has some positive features such as: (a) It is suitable 
for almost all algorithms because the desired input data (not always the perfect input data) 
always exists for a given algorithm, (b) It is driven only by the input data. So it can work 
both on-line and off-line. This is very important for real-world and real-time applications, 
(c) This methodology makes it possible to combine some simple, ready-made available 
algorithms to build vision systems that exhibit high level performance. Without adding 
adaptors, these simple algorithms may be unreliable for practical applications, although 
they have simple structures and are not time consuming. 

7.3    Representations Versus Salient Features 

Most commonly used algorithms can show good performance only if their input represen- 
tations have some "friendly" characteristics. To keep their performance high even if the 
input representations are not so "friendly", adaptors are needed which transform the input 
representations to some salient features. Thus, an adaptor can also be regarded as a salient 
feature extractor. The key issue in input adapting methodology for performance improve- 
ment is how to design an adaptor or feature extractor for each algorithm at each stage of 
the representation transformation. 

7.3.1     Optimal Feature Extraction 

From a mathematical viewpoint, feature extraction is a transformation from a m-dimensional 
input representation x to a «-dimensional output representation v, so that n < m and for 
each v € v the expected value of p(v) is minimized: 

/+oo 
p(v)p(v)dv-t min, (7.1) 

-oo 

where />(•) is a "loss" function, E(-) is the risk (the expected value of the loss), and p(-) is 
the probability density function of v. This means that the transformed representation v 
should be less redundant (because of n < m) and salient (because of E(p(v)) -)■ min, D£V). 

Thus E(-) is a measure of saliency which depends on the loss function p(-). 
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Figure 7.2: Input adapting methodology for performance improvement. 

A simple example of the representation transformation is the linear mapping W which 
transforms the m-dimensional input representation x to n-dimensional output representa- 
tion v by using 

v = Wx=(w1,w2l-,wffl)
Tx. (7.2) 

In this case, W is a feature extractor if v has some nice properties. The feature extractor 
W can be realized by using a single-layer linear feed-forward network. 

As can be seen, the basic unit of this network is a m to 1 mapping 

v = wTx = xTw,    t)£v. (7.3) 

The basic unit can also be nonlinear. In this case the m to 1 mapping is formulated by 

v = r(wTx) = r(xTw),    v € v, (7.4) 

where r(-) is nonlinear function. The mapping (7.3) or (7.4) is salient or interesting if 
E(p(v)) is minimized. The key issue of constructing a feature extractor is thus the design 
of the loss function. 

Before the loss function can be designed, the question of which v is "salient" or "inter- 
esting" should be first defined. Certainly, no universal agreement on this question can be 
expected. Two general definitions about the saliency of v that we have are: 

• Expressiveness: v is salient if it is expressive. 

• Discrimination: v is salient if it is discriminating. 

In the following the problem of how to extract these features is addressed. 

7.3.2    Expressive Feature 

Let us consider a set of m-dimensional input representations X = {xi,X2, • • -,xt} which 
builds a "cloud" of points in the m-dimensional space.  It is clear that each point x 6 X 
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Figure 7.3: A point cloud in a 2-dimensional space. 

can be projected onto a direction determined by the vector w by using Equation (7.3) or 
(7.4) and the result of this projection is v. Figure 7.3 just shows a case of m = 2. Now the 
problem is which projection direction is interesting. 

As shown in Figure 7.3 the first interesting direction is VE because the projections of all 
points onto this direction have the maximal variance and VE is, therefore, expressive. It can 
be proved that Vß is determined by that w which is the largest eigenvector associated with 
the largest eigenvalue of the correlation matrix 

Let us first define a loss function 

The risk E(po) can be calculated by 

Q = £(xxT). 

PG=^v 

Minimizing E(po) requires 

E(po) = \E{V*) = ±wTQw. 

9E     „ 
Aw = -— = Qw = 0. 

This leads to famous plain Hebbian learning rule 

Awi = nvxi, 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

where w,- and a;,- are the ith component of w and x respectively, and n controls the learning 
rate as usual. It can be seen that Hebbian learning is controlled by both the input (through 
Xi) and the output (through v). 

117 



Equation (7.8) tells that w is an eigenvector of Q with eigenvalue 0. But this could never 
be stable, because Q necessarily has some positive eigenvalues; any fluctuation having a 
component along an eigenvector with positive eigenvalue would grow exponentially. It 
might be suspected that the direction with the largest eigenvalue of Q would eventually 
become dominant, so that w would gradually approach the eigenvector corresponding to 
the largest eigenvalue with a increasingly huge norm. Certainly, w does not settle down in 
any case. There are only unstable fixed points for plain Hebbian learning procedure (7.9). 

Let us modify the loss function (7.6) to 

1 
PE = v2 - E{v2)wTvA . (7.10) 

The risk E(ps) can be calculated by 

E(PE) = \(E(v2) - E(U
2)wTw) 

= -(wTQw - £(t;2)wTw). (7.11) 

Since the risk is continuously differentiable, the optimization of (7.11) can be achieved, via 
a gradient descent method, with respect to w: 

Aw = ?ß = Qw - E(v2)w = 0. (7.12) 
aw 

Clearly, an equilibrium can be reached if w is the eigenvector associated with one eigenvalue, 
say the largest one, of Q and E(v2) is just the eigenvalue. 

Equation (7.12) leads to the learning rule suggested by Oja [60]. According to this rule, 
each input x £ X is applied to adapt the weight w by using 

Awi = rjv(xi-vwi), (7-13) 

where Wi and a;,- are the ith component of w and x respectively, and r\ controls the learning 
rate. The learning rule (7.13) is a generalized version of Hebbian learning rule (7.9) which 
has been so widely applied to develop unsupervised learning networks. 

Comparing the loss function (7.10) with (7.6) shows that these Hebbian-like learning 
rules are based on second order statistics as they usually use second order polynomials for 
measuring the interest and they lead to extraction of principal components (PC) of the 
input data [48, 60, 78]. It can be proved [48] that minimizing the risk (7.11) is equivalent to 
maximizing the information content of the output representation in situations where that 
has a Gaussian distribution. 
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The direction VE found in this way allows faithful representation of the input data and 
the projection of the point cloud onto this direction can also show interesting structure if 
the cloud contains a few clusters and the separation between clusters is larger than the 
internal scatter of the clusters. However, the direction VE can lead us astray if the cloud 
shows too many isotropically distributed clusters or if there are meaningless variables (z,'s) 
with a high noise level. In these two cases, the output representation VE doesn't allow 
discrimination between clusters (see the example in Figure 7.3). This means that second 
order polynomials are not sufficient to characterize the important features of an input 
distribution and all second order statistics based feature extractors cannot provide features 
which are discriminating enough for recognizing the structure in the input representation. 

7.3.3    Discriminating Feature 

As shown in Figure 7.3, the second interesting direction is vr> because the projections of 
all points onto this direction can enable us to better distinguish the interesting structure 
(clusters) presented in the cloud and vp is, therefore, discriminating. 

In order to find this direction, a measure sensitive to distributions which are far from 
Gaussian is needed. As already discussed, second order polynomials such as shown in (7.10) 
cannot be used for measuring deviation from normality. To emphasize bi- or multi-modality 
of the projected distribution, higher order polynomials are required and care should be taken 
to avoid their over-sensitivity to small number of outliers. 

Let us define a loss function 

PD = v2 E(v2)      \v\ 
4 3 

= v2r{v), (7.14) 

where r(v) can be regarded as a weighting function. The loss function pp is small if v is 
close to zero or to 3E(v2)/4. Moreover, it remains negative for v > ZE{v2)/A. Thus, pp 
as an index can exhibit the fact that bimodal distribution is already interesting, and any 
additional mode should make the distribution even more interesting. 

Actually, any radial basis function (see [98]) can be used as the weighting function 
in Equation (7.14) to design interesting loss functions. The advantage of r(u) used in 
Equation (7.14) is its connection to the Bienenstock, Cooper, and Munro (BCM) theory of 
visual cortical plasticity [16, 43]. 

The expected value of pp is given by: 

E(PD) = \E2
{V

2
) - l-E{v*) 
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= ^E(v2)wTQw-^E(v3). 

To achieve E(pu) —> min, the equation 

-2E-JL 
dw     dw 

should be satisfied. This leads to a learning rule 

\E\V2) - l-E{v*) = 0 

Awi = rj E{v2)v 

(7.15) 

(7.16) 

(7.17) 

where X{ is the i    component of x and rj controls the learning rate. 

The difference between the learning rule (7.17) and Hebbian learning rule (7.9) is the fact 
that the influence of the output on the learning process (the feedback) has been changed 
from v in (7.9) to v2 - E(v2)v in (7.17). This enables the learning rule (7.17) to discover 
bimodal distributions as Aw,- in (7.17) (unlike in (7.9)) has opposite value depending on if 
v is larger or smaller than E(v2). 

Unfortunately, the learning rule (7.17) has the same divergence problem like Hebbian 
learning rule (7.9) and in any case w does not settle down. One way to prevent the 
divergence of w is to constrain the growth of w by modifying the loss function (7.14): 

Pz = tr 
E(v2) 

- E(v2)wrw. (7.18) 

This leads to a new learning rule obtained by adding a weight decay to the learning 
rule (7.17): 

Awi = r} v2 - E(v2)v] (xi - vwi). (7.19) 

So far four different learning rules hav«%|en introduced. They are based on four different 
loss functions (see Table 7.1) and can be applied to extracting expressive and discriminating 
features. In Table 7.1, EF denotes "expressive features" and DF denotes "discriminating 
features". 

7.4    Adaptive Object Detection 
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Table 7.1: Different Learning Rules For Feature Extraction 

Type The Loss Function The Learning Rule Suitability 

I PG = \V2 Awi = rjvxi EF 

II PE = \ v2 - E(v2)wTw AlVi = Tjv(Xi — VWi) EF 

III PD = V2 \E(v*)       Ml 
4             3 Awi = T) [v2 - E(v2)v] Xi DF 

IV PZ = V2 \E{v*)       Ml 
4             3 - E(v2)wTw Awi = T) [v2 - E(v2)v] (xi - vw{) DF 

Figure 7.4: Input adapting for the image thresholding algorithm. 

7.4.1    Adaptor Design 

Figure 7.4 shows an adaptor which is designed for the image thresholding algorithm. The 
key idea for designing this adaptor is to decompose the input image into some local measure 
images and then to adaptively extract salient features from these local measure images based 
on the modified Hebbian learning rules presented above. In order to derive local measures 
for each pixel in the input image, the quadrature Gabor filter kernels 

G+(u,<f>) = exp 

G-(u,<f>) = exp 

X2u2(x2 + y2) 

cos[u;(a; cos <f> + y sin <£)] 

\W(x2 + y2 

(7.20) 

47T 
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■sm[u>(x cos <f> + y sin <f>)] (7.21) 

are applied to decompose the input image I(x, y) by using 

I+{x, y,u, <f>) = G+(w, <f>) * I(x, y), 

' I-(x,y,u,<l>) = G-{u>,<l>)*I{x,y), (7.22) 

where u and <f> are the modulation (center) frequency and orientation, respectively, of 
the Gabor filter kernel; A is the ratio of the channel bandwidth and the modulation fre- 
quency; and I+{x, y, u>, <f>) and /_ (x, y, u, <f>) are Gabor space image descriptions. From these 
descriptions it is easy to derive some local measures. In Figure 7.4 the power 

p(x,y,u,4) = ll(x,y,u,<l>) + ll(x,y,u>,<f>) (7.23) 

is used as a local measure of the input image I(x, y). So far m power images can be obtained 
and m depends on the quantization of w and <j>. This means a local measure vector with m 
elements is associated with each pixel of the input image. 

Each element of the local measure vector is a representation to describe the local property 
of the input image but it is not just the right feature to discriminate clusters depicted in the 
input image. The most discriminating feature should be found in the m-dimensional local 
measure space based on the structure presented by all local measure vectors in the input 
image. This requires a m to 1 feature extractor A which is trained by using the learning 
rule (7.17) or (7.19) as described above. 

To reduce high frequency components in the input data two feature extractors B* and 
C* are introduced into the adaptor shown in Figure 7.4. They are actually two convolution 
kernels with n X n elements which should be trained by using the learning rule (7.9) or 
(7.13) as described above. 

After the convolution using B* and C* two feature images can be produced which 
should be integrated by the feature extractor D in order to supply desired images for the 
thresholding algorithm. The feature extractor D performs a 2 to 1 transformation and is 
trained by using the learning rule (7.17) or (7.19). 

Now the adaptor is able to produce desired input images for the thresholding algorithm 
(see Figure 7.4). It is obvious that the output images in Figure 7.4 are better than the 
input images in Figure 7.4 to be used as the input images for the thresholding algorithm 
because the object in the center is better discriminated from the background. Thus, the 
performance of the thresholding algorithm can be improved by using the adaptor. 

7.4.2    Experimental Result for Adaptive Target Detection 
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Figure 7.5: Test Result Using SAR Images. 

Figure 7.5 shows the test result of target detection system using SAR image data. The 
column a shows the input images. The column b shows the test results using the threshold- 
ing algorithm. The column c shows the test results using the thresholding algorithm plus 
the input adaptor. It can be seen that even a simple algorithm can perform well if its input 
data are properly prepared by an input adaptor. This means that adding an input adaptor 
can enlarge the dynamic range of an algorithm and improve its performance. 

Figure 7.6 shows another example of target detection in a FLIR (Forward Looking In- 
frared) image by using the same system. Again, the image a is the input image. The image 
b and c show the test results using the thresholding algorithm without and with the input 
adaptor. As can be seen, the performance of the system is satisfied even when the input 
image has different properties as used before. 

Figure 7.6: Test Result Using a FLIR Image. 
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Figure 7.7: An outdoor scene with a car and a yellow traffic sign near the car. 

7.4.3    Detection of Colored Objects 

The first step to design a system for object detection from a color image is the specification 
of an object. An object, for instance, can be defined as a connected region in a color image 
which has a special shape such as circle or rectangle. It can also be defined as a connected 
region which has a given color topology such as a red region surrounded by a yellow region. 
In this paper, an object in a color image is defined as a connected region which is small and 
well colored. Figure 7.7 shows a sample image. The scene is photographed approximately 
every 15 minutes over a four hour period by using a fixed JVC GXF700U color video camera. 
A total of 20 image frames are obtained in this way and only four of them are selected for the 
experiment. The time and the weather condition of these four color images are: Frame 1, 
1:20pm, Sunny; Frame 5, 2:15pm, Sunny; Frame 9, 3:15pm, Sunny; and Frame 13, 4:45pm, 
Sunny. 

The colors of the car and traffic sign in Frame 13 are subdued since they are located 
under the shadow of the trees when Frame 13 was taken. However, these objects are well 
colored in Frame 1, because there was no shadow at 1:20 pm when Frame 1 was taken. 
This can be seen if all the pixels of both Frames are mapped into the RGB color space (see 
Figure 7.8). The R, G, and B values of all pixels in Figure 7.8 are normalized in the range 
[—0.5,0.5]. As shown in Figure 7.8, all pixels in Frame 13 are located along the line segment 
between the point [-0.5, -0.5, -0.5] and the point [0.5,0.5,0.5]. This line can be thought 
of as a colorless line. This means that the saturation or the color of all pixels in Frame 13 
is relatively low because they are located close to the colorless line. 

On the contrary, some pixels in Frame 1 are located away from the colorless line and the 
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Frame 1 Frame 13 

Figure 7.8: Image pixels are mapped into the RGB color space. 

saturation of these pixels is relatively good. These pixels are well separated from the pixel 
group around the colorless line and can be regarded as outliers of this pixel group. Thus, 
they can be defined as well colored pixels which build regions of interest in Frame 1. In the 
following we describe how to develop an adaptive system to find these outlier pixels. 

It is first interesting to know what happens if all pixels in a color image are applied to 
train the 3 to 1 feedforward network by using Hebbian-like learning rules shown in Table 7.1. 
The weights of this 3 to 1 feedforward network obtained after training by using the learning 
rule II and III in Table 7.1 are shown in Table 7.2 and Table 7.3, respectively. The trained 
network can then be used to map a color image into a gray scale image. Figure 7.9 shows the 
gray scale images mapped for Frame 1 and Frame 13. The first row in Figure 7.9 shows the 
images mapped by using the weights listed in Table 7.2, while the second row in Figure 7.9 
shows the images mapped by using the weights listed in Table 7.3. 

If the two mapped images shown in the second row of Figure 7.9 are compared, we can 
see that the car and the traffic sign are much better separable from the background in 
Frame 1 than in Frame 13. This means that, although Frame 13 has three color channels 
R, G and B, the color information encoded in this frame is so weak that this frame can be 
regarded as almost colorless. In fact, most of the information in Frame 13 is encoded in 
a gray scale image which is the right image in the first row of Figure 7.9, because it was 
obtained by using the most expressive mapping and this mapping was determined by using 
all the pixels in Frame 13 as the training data and the modified Hebbian learning rule II in 
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Table 7.2: Weights after training by using the learning rule II. 

Image Used for 

Training W\ w2 w3 

1 0.576884 0.592581 0.562207 

5 0.585867 0.590048 0.555533 

9 0.583240 0.567947 0.580755 

13 0.585854 0.577843 0.568225 

Table 7.3: Weights after training by using the learning rule III. 

Image Used for 

Training Wi w2 w3 

1 0.691818 -0.716642 0.088382 

5 0.685157 -0.724709 0.073194 

9 0.727544 -0.685147 -0.035408 

13 0.657560 -0.749287 0.078640 

Table 7.1. 

The well colored objects such as the car and the traffic sign in this image (the left image 
of second row shown in Figure 7.9) are separable from the background. To understand this, 
all selected frames are transformed by using such mapping (see the first row of Figure 7.10) 
and compared with their saturation (see the second row of Figure 7.10). It is clear that the 
adaptive mapping obtained by using the modified Hebbian learning rule III or IV in Table 7.1 
discriminates well-colored objects from the background. The left image of Figure 7.11 shows 
the object detection result from Frame 1 after thresholding the results shown in the top 
left image of Figure 7.10. This image can be further used for post-processing. The right 
image of Figure 7.11 shows the post-processing result using morphological filtering followed 
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Figure 7.9: Grey scale images obtained by adaptive mapping. 

by color based filtering. 

7.5     Conclusions 

In this paper, the attention was paid on how to to improve the performance of object 
detection systems by adding the adaptability to ready-made available algorithms without 
changing their internal structure. The input adapting based approach presented here pro- 
vides a promising solution to improve the performance of pattern recognition and computer 
vision algorithms and systems to meet requirements of real-world applications. 
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Figure 7.10: The discriminating mapping used to color images and compared with the saturation 
mapping. 

Before Post-Processing After Post-Processing 

Figure 7.11: The object detection from Frame 1, before and after post-processing. 
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Chapter 8 

Case-Based Learning of 
Recognition Strategies 

8.1     Introduction 

Photointerpretation (PI) has been an important application domain of image understand- 
ing (IU) techniques for about two decades. An important goal of PI or image exploitation 
(extraction of intelligence from image data, particularly aerial imagery) is to aid reconnais- 
sance tasks, such as airfield, port, and troop movement monitoring. The problem of PI is 
one of identifying instances of "known" object models in images acquired from a platform, 
such as by a satellite or a reconnaissance aircraft. Like PI, automatic target recognition 
(ATR) is also concerned with finding instances of known targets in the input sensor data. 
Model-based object recognition is a challenging task under real-world conditions such as 
occlusion, shadow, cloud cover, haze, seasonal variations, clutter, and various other forms of 
image degradation. Additionally, ATR scenarios are characterized by multi-modal imagery, 
low resolution, and camouflage. All of these problems put heavy requirements on any IU 
system to be robust. 

Automatic acquisition of recognition strategies in dynamic situations has been a bot- 
tleneck in the development of automated IU systems applied to real-world problems, such 
as PI and ATR. The problem occurs while matching a stored object model to an input 
instance of that model and is attributed to the initially unknown pose of object and the 
varying environmental conditions. During the process of image/scene understanding, a hu- 
man relies heavily on the memory of past cases and experience. We use the Case-Based 
Reasoning (CBR) paradigm in which "past" experiences are stored in memory as cases and 
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are used to solve a new problem case. Similar cases can be combined to create problem 
solving shortcuts or to anticipate problems in new situations. The set of cases is prioritized 
and a strategy for the current problem is generated and executed. Various combinations of 
cases are created until a successful solution is reached. 

8.2    Learning Recognition Strategies 

Figure 8.1 describes our approach to learning recognition strategies for real-world object 
recognition tasks. The main learning paradigm employed in our recognition scheme is Case- 
Based Reasoning. The detailed CBR-based recognition framework shown in Figure 8.1 con- 
sists of four subtasks: (a) the generation of goal-directed recognition strategies using CBR, 
(b) the construction and maintenance of the Generalized Case Library (GCL) that collects 
past situations and corresponding actions, (c) the development of efficient algorithms for 
matching new situations to previous cases, and (d) the generalization of new cases using a 
variation of Explanation-Based Learning (EBL). Additionally, our approach also addresses 
the problems of indexing into the object model data base and the verification of object 
hypotheses. This latter task consists of two main parts: (a) the creation and refinement 
of the decision structures for indexing, using a variant of the Conceptual Clustering (CC) 
learning technique, and (b) the implementation of the indexing and matching algorithms. 
In this report, we focus on the CBR-based framework. 

8.2.1    Case-Based Reasoning (CBR) 

Case-based approaches are characterized by how the learner represents what it has learned 
so far, as well as the analogical methods which are used to transfer the learned experience. 
Human expertise in problem solving is largely dependent on past experiences. This idea has 
influenced the evolution of Case-Based Reasoning [5, 45, 73]. A related approach is that of 
reasoning by analogy [4, 28]. In CBR, "past" experiences are stored in memory as cases and 
are used to solve a new problem case. Given a problem to be solved, the case-based method 
retrieves from the memory the solution to a similar problem encountered in the past, adapts 
the previous solution to the current problem, and stores the new problem-solution packet 
as another case in the memory. 

There are several advantages of CBR as a learning paradigm. First, CBR has the capa- 
bility of anticipating and therefore avoiding past mistakes as well as focusing on the most 
important aspects of a problem first. All of these lead to an increase in efficiency over time. 
Second, the learning process is fairly uncomplicated, since CBR does not require causal 
models like inductive learning or extensive domain knowledge like analytic learning. Third, 
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Figure 8.1: A CBR framework for learning recognition strategies. EBL generalizes cases and along 
with CC it facilitates automatic knowledge acquisition of object models. 

the individual or generalized cases can also serve as explanations. Fourth, the process is 
scalable. Fifth, the knowledge acquisition bottleneck is relatively simple to solve in CBR 
than in conventional learning systems. This is because individual cases interact a little 
among themselves unlike the rules. The major concerns with CBR are the selection of the 
indexing scheme to organize cases in the memory, the method for choosing the most relevant 
cases at reasoning time, and the adaptation heuristics to modify previous cases to fit the 

current problem. 

There are two major types of case-based approaches:   interpretive/classification (or 
precedent-based) CBR, and problem solving CBR. In the precedent-based CBR, the task is 
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to decide whether or not a new case should be treated like one of the stored cases based 
on similarities and differences between the two. This is done by generating a pro's and 
con's analysis from a comparison of the two cases. In problem solving CBR, a solution for 
the new problem is formulated by suitably modifying past solutions. In either approach, 
a proposed solution must be verified for appropriateness. This is particularly important if 
the derived solution is based on "unexplained" experiences. This verification process is akin 
to an evaluation procedure associated with any learning process. An interpretive CBR is 
used in such evaluation process to provide a check on the use of knowledge derived from 
experience. 

8.2.2    CBR in IU 

Current model-based IU approaches to object recognition generally utilize only the geo- 
metric descriptions of object models, i.e., they emphasize the recognition problem as a 
characteristic of individual object models only. However, there are various factors, such 
as contextual information, sensor type, target type, scene models, and related non-image 
information that may influence the outcome of recognition in real-world applications such 
as ATR, PI, navigation. Humans also rely on such ancillary information for object recogni- 
tion and scene understanding. For example, it is well known in the intelligence community 
that oxen yoked to water pumps in Southeast Asia resemble anti-aircraft artillery in aerial 
images [2]. Thus, without the knowledge of the area being examined, an image analyst 
or an automated PI system may be misled easily. Thus, prior experience in addition to 
object/sensor models is important for devising efficient and robust recognition strategies to 
deal with noisy data or occluded targets against complex backgrounds. 

Prototypical situations (cases) observed in the past are useful for the recognition of 
objects as well as for the assessment of entire scenes. An example of a case in the PI 
context is given in Figure 8.2. Each path from the root node to a leaf node in the tree 
represents a single case. The path incorporates the information normally used at each level 
in an object recognition task, e.g., aircraft recognition. It includes contextual information, 
e.g., airfield, scene type, e.g., tarmac parking areas, the best object recognition strategy, e.g., 
selection of segmentation, feature extraction, recognition algorithms and their parameters, 
and corresponding image analysis goals, e.g., finding instances of transport aircraft such as 
Hercules. A case of ATR would additionally include sensor type, terrain, and radiometric 
information. 

Case-based methods are best suited to problems for which many training cases are avail- 
able, perhaps with many exceptional cases, and it is difficult to specify appropriate behavior 
using abstract rules. Most IU applications, such as ATR and PI, are characterized by 
large-volume image exploitation corresponding to a variety of scenarios, many of which re- 
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Figure 8.2: Representation of a case in the photointerpretation context. 

quire unique analysis. Besides, IU for unstructured environments is difficult to formalize in 
terms of rules that are general enough to be applicable to diverse situations. For example, 
recognition of a Hercules aircraft in a parked area of the tarmac under sunny condition has 
been successful in the past by following the path from the root node to the leaf marked 
"hercules" in the case representation of Figure 8.2. However, the same path may not lead 
to a successful recognition of an F-18 aircraft. Thus, the case of recognizing a Hercules is 
not the same as that of an F-18. 

8.2.3    Learning Method 

The learning approach is concerned with (a) building new cases, (b) generalizing and re- 
fining existing cases, for a particular application. As indicated in Figure 8.1, the relevant 
knowledge is accumulated in the generalized case library. For updating and indexing into 
the GCL we use a combination of two different learning strategies: CBR is used primarily 
for retrieving the relevant earlier experiences and updating (restructuring) the knowledge 
base; CC is used for maintaining decision structures (classification trees) that allow efficient 
object recognition at run time. 

The GCL is the collection of knowledge that allows the system to perform object recog- 
nition and scene assessment. It is a dynamic body of information that represents the 
experience base of the object recognition system. For efficient indexing, the GCL is repre- 
sented as a structured hierarchy of individual cases. Each case, in turn, is represented using 
scripts and memory organization packets (MOPs) which are meta-scripts [80, 81]. These 
data structures are appropriate for episodic memory or time sequences of episodes which 
are equivalent to the sequences of computational steps/recognition strategies in our case. 
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Since scripts contain more specialized information, these are used for lower-levels of a case 
structure. The MOPs allow representation of more generic knowledge such as an airfield 
which can be instantiated and specified for recognition of multiple aircraft types. 

When a new problem situation or IU task is encountered, e.g., recognition of aircraft 
on tarmacs, the process of interpreting and assimilating the new task in CBR framework 
breaks down into the following steps: 

• Assign Indices - Features of the new task are assigned as indices characterizing the 
task. For example, "tarmac" and "aircraft" can be used to characterize the task as 
"aircraft-on-tarmac" which will be a particular subtask of "aircraft-in-airfield" task. 

• Retrieve - The indices are used to retrieve from memory a similar case encountered 
in the past based on similarities and differences. The past case contains the prior 
solution. For example, a case which has involved aircraft on tarmac instead of grass 
areas. 

• Modify - The previous solution is adapted to the current task, resulting in a proposed 
solution. For example, the previous recognition may have occurred under sunny condi- 
tions which required detection of shadows, while the weather condition for the current 
task is cloudy. Thus, the previous case is modified by eliminating all computational 
steps involving shadows. 

• Test - The proposed solution is carried out. It may lead to success or failure. For 
example, the parameters of the segmentation algorithm for detecting regions of interest 
may have been retained as the same as in the previous case. On the other hand, the 
contrast of the current image may be low due to cloudy weather condition, thereby, 
requiring somewhat different segmentation parameter set. 

• Assign and Store - If the solution succeeds, then indices are assigned to it and the 
solution is stored as a working solution. The successful plan is then incorporated into 
the case memory. If the solution is not too different from the proposed solution, then 
it affects the script of the existing case a little. 

Explain, Repair, and Test - If the solution fails, then the failure is explained, the 
working solution is repaired, and the test is again carried out. The explanation pro- 
cess identifies the source of the problem. For example, new segmentation parameters 
are selected when recognizing aircraft under cloudy weather condition. The predic- 
tive features of the problem are incorporated into the indexing rules to anticipate 
this problem in the future. For example, "aircraft-on-tarmac" index is extended to 
"aircraft-on-tarmac-sunny" and "aircraft-on-tarmac-cloudy". The failed plan is re- 
paired to fix the problem, and the revised solution is then tested. The rest of the plan 
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is carried out with new segmentation parameters in our example. A new case is then 
created in the memory to handle this new situation. 

The results of the CBR-generated strategy are passed to the interpretation and evalu- 
ation component. Case indexing and matching is performed using the intermediate visual 
concepts. The different recognition states are: complete recognition,' incomplete recogni- 
tion, object occlusion, object model acquisition, object model refinement, and recognition 
failure. Now, three situations may arise. First, if the strategy is very similar to one of 
the cases extracted from the GCL, no learning takes place. In this instance, the system 
has encountered an "ordinary" image interpretation task in which the current collection of 
system knowledge is adequate. Second, if the strategy is an extension of an existing case 
(i.e., the existing case represents a subset of elements of the new strategy), a case refinement 
operation may be necessary. The new strategy and its associated case are sent to the EBL 
module to determine if any new information should be included in the existing case. Third, 
if a unique combination of existing cases has been utilized to create a novel strategy for a 
given problem, a case acquisition operation is required. The new strategy is passed to the 
EBL, which applies its system control knowledge in order to remove irrelevant details and 
conceptualize the scope of the strategy. This new strategy is then inserted as a new case 
into the GCL. The CBR and the EBL paradigms are combined in a complementary manner. 
CBR has the ability to index into a large number of potential solutions and select a set of 
cases that match the characteristics of the current object recognition task. However, the 
performance of CBR degrades with the size of the case library and also by the amount of 
irrelevant detail retained in the stored cases. EBL compensates for this by learning only 
the concepts underlying the individual cases before adding the conceptual abstraction of 
the cases to the GCL. On the other hand, since CBR combines a set of previous cases to 
create a single new case for the current problem, any bias of the EBL component towards a 
particular training example will be greatly reduced. In summary, CBR allows the capture 
of context and domain-specific information to improve recognition performance over time. 

8.2.4    An Example 

An example that illustrates the use of CBR for high-level object recognition is given in 
Figures 8.3-8.4. A knowledge-based technique initially identifies several regions of interest 
(ROIs) in the image that are likely to contain aircraft. One such ROI and its corresponding 
segmentation results are shown in Figures 8.3(b) and 8.3(c), respectively. Also shown in 
Figure 8.3(c) are the dominant axes of an aircraft structure along the wing and the fuselage. 
(The third axis corresponding to the shadow of the wing is found to be part of a shadow 
region and is removed subsequently.) The most "salient" features (with regard to edge 
strength and global connectivity) and the identified shadow lines are shown in Figures 
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Figure 8.3: High-level object recognition based on CBR. (a) Original image; (b) Initial region of 
interest (ROI); (c) Extracted dominant axes. 

8.4(a) and 8.4(b), respectively.   Notice that most of the front edges on both wings are 
missing from the extracted line group. 

A composite structure detection step identifies trapezoid-like shapes that are characteris- 
tic of wings, tails, and rudder in non-shadow lines (Figure 8.4(b)). Next, an evidence-based 
dynamic reasoning process seeks to instantiate one of these composite structures (that are 
aligned with the dominant axes) as a wing. This situation is shown in Figure 8.4(c). The 
support for this hypothesis, however, is weak, as there is no evidence for the other wing 
(i.e., no trapezoid-like structure was detected that is aligned with the same dominant axis). 
Subsequently, less "salient" line features are acquired (Figure 8.4(e)) and a trapezoid-like 
structure is detected by relaxing the thresholds of the perceptual grouping process. The 
final recognition result is shown in Figure 8.4(f). 

The experiences gained in this recognition "case" are: 
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Figure 8.4: High-level object recognition based on CBR (continued), (a) Fitted straight lines; 
(b) Detected shadow lines; (c) Trapezoid shapes in non-shadow groups; (d) Hypothesized right wing 
and projected left wing; (e) Emergence of additional non-shadow lines; (f) Final recognition result. 

• Shadow and object regions are similar (Figures 8.3(a)-(a)), therefore the rear part 
of the aircraft could not be recovered (Figure 8.4(f)) without using sensor/platform 

information. 

• Relative positions of the sun and the sensor had given rise to specularity along the 
leading edges of the wings, making these hard to detect from edge information (Figures 

8.4(a) and 8.4(d)). 

• Evidence of engines had been helpful in hypothesizing a wing (Figure 8.4(d)). 

Additional information in this case includes the sun angle, sensor position, sensor/platform 
parameters, segmentation parameters, directions of shadow regions in a ROI, etc. Clearly, 
such a "case" is valuable when the task is to investigate another ROI, say the one next to 
the current one in Figure 8.3(a) which contains another aircraft of the same type (i.e., a 
Hercules). The recognition algorithm will use the same segmentation parameters, will try 
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to verify the front parts of the airplane first, and will know that the leading edges of the 
wings may be difficult to detect. 

8.2.5    Implementation Issues and Performance Evaluation 

There are several issues of practical importance in implementing a CBR-based recognition 
system. These issues are, 

• representation and contents of a case in the memory, 

• memory organization and selection of indexing rules and search algorithms, 

• incorporation of changes over time in the cases and the indexing rules, 

• recognition of a new situation as similar to a previous case, i.e., the choice of similarity 
metrics, 

• adaptation of old solutions to new problems, i.e., selection of modification rules, 

• acceptance or rejection of a new case that is in conflict with a previous case, i.e., 
explaining the differences between two problem situations, 

• learning from mistakes and devising the repairing rules. 

Unlike the rule-based systems, the rules for indexing, modification, and repair do not make 
up the principal knowledge base but, rather, independent support modules. Thus, the 
complexity involved is less severe than in most rule-based systems. However, the theory of 
case-based reasoning suggests that these rules would themselves be acquired by experience 
from cases through a recursive application of the CBR algorithm. That is, the system would 
derive rules for indexing, modification, and repair from cases and experience. 

The evaluation of the performance of a CBR system can be quite complex due to the 
nature of the represented knowledge. One way to express the recognition success would 
be to note the similarity between two problem situations. If these situations are identical, 
then one would expect identical recognition results. The performance difference would 
increase with the difference in the situations. Finding a single difference (or similarity) 
metric would be quite complex as there may exist a number of alternatives to compare 
two situations. Thus, a multi-objective criterion function would be more appropriate. One 
could simply focus on the various rules for indexing, modification, and repair to evaluate 
the performance of a CBR system. For example, the hit vs. miss ratio in retrieving cases 
from the memory using the indexing rules can be one measure.   Various tools from the 
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field of memory management can be used as potential measures to evaluate the efficiency 
of memory management in a CBR system, e.g., memory usage, memory fragmentation, 
distributed vs. centralized memory, dynamic memory organization. 

8.3    Future Work 

Our initial goal of learning recognition strategies using case-based approaches would be lim- 
ited to PI applications. We have already developed an aircraft recognition system for this 
purpose and are in the process of extending it further. Currently, this system can handle 
quite complex imagery and the variabilities present in such images would be ideal for a 
case-based approach. We have presented some results using this system in this report and 
sketched our case-based approach. Since our focus is on developing recognition strategies 
through a learning process, we are minimizing our effort to design appropriate CBR tools. 
Thus, we are investigating a number of such tools that are currently available commer- 
cially, e.g., ESTEEM, CBR-Express, REMIND, and through educational institutions, e.g., 
Mem -1, Tub-Janos. Some of these allow user-defined similarity measures and also some 
limited amount of induction. Nonetheless, these tools should provide scope for some initial 
experimentation, although in the long run these would not suffice since they are developed 
for non-IU applications. Our future effort would also be directed towards detecting and 
recognizing other kinds of targets besides aircraft and we would also like to explore ATR 
applications of our CBR-based learning system. 
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Chapter 9 

Learning Composite Visual 
Concepts 

9.1     Introduction 

The context of the learning problem addressed here is structural object recognition, which is 
based on the assumption that structural primitives, extracted from the image in a bottom-up 
fashion, can be used to describe and recognize the objects of interest. The main advantage 
of this approach is that it facilitates (at least in principle) recognition under object and 
aspect variations and, as a recognition-by-components approach, under partial occlusion. 

The main problems associated with the structural recognition approach are (a) the com- 
putational expense for matching structural object descriptions, (b) the reliable extraction 
of structural primitives from the image, and (c) the descriptive limitations of the commonly 
used structural features. The combinatorial problems associated with matching structural 
descriptions call for methods to limit the search space. When object models are complex, 
their direct instantiation, either in a top down or a bottom-up, becomes impractical. A 
logical solution is to describe objects as assemblies of smaller substructures (intermediate 
visual concepts) that can be instantiated with much less effort. Perceptual grouping meth- 
ods (e.g., [49, 72, 79]) make use of this fact by using simple geometrical relationships (e.g., 
collinearity, cotermination, parallelism, etc.) to assemble primitives into more complex fea- 
tures. However, due to the domain-independent specification of perceptual groupings, their 
"indexing power" is insufficient in applications with more than a few object categories. An- 
other weakness of current structural recognition techniques is their reliance upon a single 
type of primitive feature, which leads to low redundancy and inappropriate descriptions. 
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We address the first problem by learning significant composite structures that are hi- 
erarchically assembled from geometric primitives and serve the purpose of intermediate 
goals for partial recognition. The other two problems are approached by using a larger 
variety of different structural feature types and corresponding object representations, thus 
achieving a higher level of redundancy. For the recognition framework we adopt a model- 
based hypothesize-and-test approach that consists of three main steps: primitive extraction, 
model-base indexing, and model verification. These three steps operate in a bootstrap fash- 
ion, i.e., the process starts in a bottom-up mode by extracting primitives and combining 
them in a meaningful way up to a point when a plausible object hypothesis can be made. 
Then the recognition process turns into a goal- (model-) directed search and verification 
process. 

The bottom-up part of the recognition process can be viewed as a multi-stage grouping 
process. At the lowest level, individual pixels are grouped to form the structural primitives, 
e.g., straight line segments, arcs, regions, etc. At the intermediate-level, the structural 
primitives produced by feature extraction are combined into more complex structural ar- 
rangements, usually biased by perceptual (i.e., domain-independent) constraints. The main 
goals of the second grouping step1 are to 

1. combine structural features in a way that they are likely to belong to the same object, 
thus reducing the number of "clutter" features that have no correspondence in the 
model structure and 

2. to produce more expressive, object-specific entities that allow effective indexing into 
the model base. 

It is the second item that is our main focus in this part of the project. We need to ask the 
question, which properties, apart from being perceptually significant, should be incorpo- 
rated into the grouping process. We believe that, in order to lead to useful object indices, 
this second set of grouping criteria cannot be model- or domain-independent but needs to 
be adjusted to the particular application domain, the objects involved, and the context in 
which they appear. The value of a particular feature group depends mainly upon (a) its 
indexing power, i.e., its capability to select a specific object (or a small set of objects) and 
(b) its operationality, i.e., the effort needed to instantiate it. The general approach for the 
use of learning to come up with the most effective feature groupings is described in the 
following. 

JThis step is the one commonly referred to as "grouping." 
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9.2    General Idea 

The intermediate-level part of the project is focused on the problem of "inventing" new 
composite structural features (intermediate visual concepts) to improve recognition perfor- 
mance. We use intermediate visual concepts that are directly related to the application 
domain. For this purpose, we select certain high-order assemblies of primitive features 
which are both perceptually salient and sufficiently distinct to allow very efficient indexing. 
We employ a two-step grouping strategy that consists of 

1. a domain-independent perceptual grouping stage (which ensures perceptual saliency 
of the selected groups to cope with over-segmentation), followed by 

2. a model-based grouping process that is domain-dependent.   The high-order, model- 
based groups are formed as assemblies from the lower-order perceptual groups. 

Current perceptual grouping methods (e.g., [49, 72, 79]) are based on (a) a single type of 
primitives and (b) grouping rules that are predetermined and not adapted to the application 
domain. The use of a single feature type has the advantage of simple representations 
and grouping criteria that can be evaluated efficiently. Also, the corresponding structural 
descriptions are independent of the problem domain. The disadvantages are that 

1. the perceptual "saliency" of groupings between different types of primitive features is 
not used, 

2. groupings based on a single feature type are inherently brittle, and 

3. fixed, domain-independent grouping rules are not suitable for dynamically changing 
scenes. 

In our approach, we combine multiple types of structural features at the intermediate level, 
such as line segments, conic sections, corners, inflection points, blobs, etc., in order to in- 
crease the descriptive power and robustness (through higher redundancy) of the "polymor- 
phic" feature groupings. The problem of grouping polymorphic features is more challenging 
than grouping features of the same kind, with regard to the representations and grouping 
algorithms involved. 

The selection and generalization of the intermediate visual concepts is critical in order to 
in-sure optimal recognition performance. It requires knowledge of the application domain, 
the imaging process, the behavior of the perceptual grouping stage, and the recognition 
utility of the intermediate visual concepts. We use Explanation-Based Learning (EBL) to 
solve this special knowledge acquisition problem.   EBL is useful in this context to detect 
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inherent pattern regularities and to generalize patterns, i.e., to determine the simplest 
description with respect to a given set of operators. In summary, the strategy at this level 
involves: 

1. The use of a two-stage grouping strategy that involves (a) perceptual grouping and 
(b) model-based grouping with a database of generalized visual concepts. 

2. The use of EBL to automatically infer the most useful intermediate.visual concepts 
by applying the entire recognition "engine" to real examples. 

3. The use of "polymorphic" feature groupings based on multiple feature types. 

The main advantages we expect from this strategy are: 

1. A significant reduction of the overall search complexity for structural model instanti- 
ation by using high-order intermediate visual concepts. 

2. Increased robustness and indexing power from the use of polymorphic groupings. 

3. Adaptation of grouping processes to application domains and environmental condi- 
tions. 

9.2.1 Example 

In the aircraft picture shown in Figure 9.1 it is evident that the groups of lines that compose 
the wings, tails, and rudders, form high-order groupings that are characteristic for many 
types of aircraft. Obtaining a conceptual description of certain configurations, e.g., the 
trapezoid that forms the wings, is useful for improving the recognition of other aircraft. 

9.2.2 Goals 

The main goals at the intermediate level are to automatically acquire new visual concepts 
from examples, using Explanation-Based Learning and incorporating polymorphic feature 
groupings. We shall demonstrate that the use of domain- and object-specific grouping, in 
combination with traditional perceptual grouping, can significantly improve the efficiency 
of indexing and object recognition. 
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Figure 9.1: Domain-specific, composite visual concepts are formed by combining perceptually 
salient low-order groupings. Here only straight line segments are used as initial primitives. An 
example for a simple intermediate-level concept is the typical trapezoid shape found at the ends of 
the aircraft wings. Four instances (1-4) of this concept are outlined and marked in this image. 

9.3    Approach 

The instantiation of visual concepts is performed in a two-stage process (Figure 9.2). 
Initially, the simple features extracted from the input image by various different selec- 
tion mechanisms (e.g., straight line segments, conic segments, homogeneous blobs, etc.) are 
grouped using domain-independent perceptual grouping criteria. Examples for the grouping 
criteria are collinearity, cotermination, parallelism, proximity, relative size, symmetry. 

At the second stage, domain-specific models of high-order composite structures (inter- 
mediate visual concepts) that have been found useful for recognizing objects guide the 
grouping process. Visual concepts are learned by the system (see below) and stored in a 
local database that is continually updated. Only those groupings are considered here that 
were found perceptually significant at the initial perceptual grouping stage. During actual 
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Figure 9.2: Learning intermediate visual concepts using Explanation-Based Learning (EBL). 

(routine) recognition, the visual concepts found at this stage are directly used for indexing 

into the object model base. 

Learning of new visual concepts is based on the following criteria: 

Perceptual saliency: A concept must be perceptually salient, i.e., receive a high score in 

the first (perceptual) grouping stage. 

Operationality: A concept must be describable in terms of the operators that the model- 
based grouper is able to perform. For this purpose, knowledge about these operators 

is supplied in explicit form. 

Simplicity: Concepts that permit a simple description (i.e., one with few grouping steps 

145 



/ transformations) are preferred.  EBL is used to find the simplest description for a 
given feature configuration (Minimum Description Analysis). 

Recognition utility: Only those concepts that are found to be useful in recognizing a 
particular object are eventually accepted. This is determined by considering the 
outcomes of the high-level recognition steps. 

Visual concepts in the database are generalizations of the actually observed feature con- 
figurations, produced by analytic (EBL) learning (Pattern Generalizer). The representation 
of a concept in the database is an annotated symbolic description, which is generalized by 
parameterizing specific geometrical properties of the corresponding feature representation. 
The task of the Model-Based Grouper module is to instantiate the visual concepts, in the 
stream of perceptual groups, operating in a goal-directed fashion. The concepts (goals) 
are supplied to the grouper as decision structures that are updated dynamically when the 
contents of the database are changed. Interaction with high-level object recognition occurs 
in two forms. First, instantiated known groups can be directly used for indexing into the 
model base at the high level. (The association between intermediate concepts and object 
models is done at the high level.) Secondly, high-level recognition is invoked to determine 
the recognition utility of new concepts. 

The use of a small set of fixed bottom-up composite structural concepts allows efficient 
detection in images. Similar arguments hold for top-down search for specific arrangements 
when the number of possible objects is small. The disadvantage of this approach is that a 
small but fixed set of intermediate structural concepts is generally not useful in different 
application domains. For using top-down, model-based composite structures, the number 
of models is restricted. In both cases, the manual specification of suitable intermediate 
structures is difficult. 

The following specific tasks are involved: 

9.3.1    Task 1 — Model-Based Interpretation of Perceptual Groups 

We develop methods for collecting structural primitives of different types (e.g., lines, arcs, 
parametric curves, blobs) into polymorphic groups, using a set of perceptually significant 
spatial relationships. The relationships (e.g., proximity, collinearity, symmetry, relative 
size) being used depend upon the type of elements contained in each particular group. The 
purpose of this initial bottom-up grouping process is to supply an ordered set of composite 
structures that have a high probability of being semantically meaningful. The database of 
perceptual relationships used in this task is fixed, i.e., not subject to adaptation during 
runtime.    However, this database must be designed to allow easy extension when new 
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structural feature types are introduced. The main subtasks are to develop (a) the database 
of perceptual relationships, (b) evaluation function to measure the "saliency" of high-order 
polymorphic groups, and (c) efficient grouping algorithms that can handle polymorphic 
structures. 

9.3.2 Task 2 — Composite Structure Model Acquisition and Refinement 

We consider the actual semantic significance of perceptual groups with regard to the given 
application domain, in contrast to the previous task, where we employ only general percep- 
tual cues. The module developed in this task uses the initial perceptual groups developed in 
Task B.l for ultimately creating an index into the object model database. For this purpose, 
the module tries to form more complex groups from the incoming simple groups by using 
a database of semantically relevant structures. The database is created and maintained by 
a learning scheme based on Explanation-Based Learning (EBL). The major steps in this 
task are (a) the development of a suitable representation for high-order polymorphic fea- 
ture groups which can also express their variability, (b) the adaptation of EBL for learning 
parameterized geometric concepts and its implementation in software, and (c) the develop- 
ment of efficient matching algorithms that can make use of the polymorphic nature of the 
feature groups. 

9.3.3 Task 3 — Composite Structure Learning Subsystem 

The goal of this task is the integration of all components needed for the adaptive inter- 
mediate-level learning scheme. Here we address in particular the interaction between the 
database of composite feature structures (Task 2) and the object models at the high level. 
The interaction with the high-level recognition module is needed to determine the utility of 
an observed feature structure for recognizing a particular object. 

9.4    Learning at the Intermediate-Level Vision: Previous 
Work 

Learning at the intermediate level has been applied mainly in the areas of texture recogni- 
tion, algorithm parameter adjustment, motion perception, and specific vision tasks, such as 
road following. Currently, clustering methods are the most popular adaptation or learning 
paradigm at this level, followed by the use of neural networks and some applications of 
genetic algorithms. Structural learning methods, such as EBL or CBR are currently much 
less used at the intermediate level. 
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An example for inductive learning at the intermediate level is the approach to texture 
recognition described by Pachowicz [61]. He uses a scaling process to convert feature vectors 
of texture statistics into symbolic intervals and then applies an inductive learning program to 
find the most preferred symbolic expression according to a specified criterion. The method 
also employs a rule optimization technique after texture learning and prior to recognition to 
allow rule generalization. A performance improvement over the traditional nearest-neighbor 
clustering method is demonstrated. 

Gillies [29] reports a learning system based on Genetic Algorithms for generating image 
domain feature detectors to find the location of objects in the image. A genetic search 
method is used to generate populations of feature detectors which are morphological opera- 
tors. The functions performed by the layered system are tailored to the specific imagery on 
which the system is trained. The system is also shown to handle multi-class discrimination. 

Another application of Genetic Algorithms at the intermediate level is the work done 
by Roth and Levine [76], which is a learning-based approach to extraction of geometric 
primitives (parametric curves) from images. In this approach, a geometric primitive is 
genetically represented by the minimal set of points instead of its parameters. Learning 
involves determining the minimal set of points for a given primitive type that optimally 
fits the data. Montana [56] reports an expert system for the interpretation of passive sonar 
images that employs a GA for determining detection thresholds. 

There is a growing number of neural network applications at the intermediate vision level. 
An example is the work by Pomerleau [68] on network-based navigation of autonomous 
robots. Due to their inability to capture and generalize structural descriptions, NNs in 
general do not appear to be well suited for solving structural problems at the intermediate 
level. There are, however, certain functional mapping problems at the intermediate level 
that can be addressed successfully with NNs. For example, Aloimonos and Shulman [3] have 
suggested the use of NNs to learn the parameters involved in "Shape-from-X" problems. 

Intermediate-level composite structures are commonly detected by either bottom-up 
grouping criteria (see above) or specified a priori as prototype patterns that are searched 
for in a goal-directed manner (e.g., [57]). The work reported by Segen [82] addresses some 
aspects of learning composite structural concepts from examples, however, no results have 
been shown on real images. Structural feature detection is usually based on a fixed set of 
visual primitives for which efficient detection algorithms are available. The incorporation of 
features of varying complexity has been addressed using only fixed, domain-independent 
grouping criteria. The problem of automatically forming intermediate-level perceptual 
shape concepts has found considerable attention in the psychological field recently. 
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9.5    Explanation-Based Learning 

Explanation-based learning (EBL) [20] is an extension to an earlier concept called "ex- 
planation-based generalization" described by Mitchell et al. in [54]. Both paradigms are 
based on the same idea of using strong domain knowledge to "explain" why a given training 
example is a member of the concept being learned. 

The domain knowledge (or domain theory) required in EBL consists of three main com- 
ponents: 

1. A specification of the types and properties of the objects being dealt with. 

2. A set of inference rules for inferring relations and properties from given relations and 
properties, and possible transformations between objects in the domain. 

3. A library of problem-solving operators (schemata) that were either learned from earlier 
training examples or are hand coded. 

The learning task in EBL can be stated as finding a generalized sequence of legal trans- 
formations (a schema) to derive the goal configuration from a given initial configuration. 
This is usually accomplished in a two-step process: 

1. Construct an explanation that is causal with respect to the domain knowledge. This is 
similar to constructing a proof sequence for a theorem with respect to a set of axioms. 

2. Generalize that explanation into a new schema by looking for the weakest precondi- 
tions under which the same explanation would apply. 

The main limitation of EBL in its original form lies in the fact that the domain knowledge 
must be complete. If a given training example cannot be explained in terms of the existing 
domain knowledge, no generalization and thus no learning can take place. Another issue is 
the way the domain knowledge is specified and used. In "pure" EBL, the domain knowledge 
is expressed in the form of first-order logic predicates or Horn clauses, which provide no 
notion of proximity or similarity in a quantitative sense. However, many domains require 
handling of approximate, distorted, or noisy descriptions, and are thus not well suited 
for EBL in its original form. As a consequence, there have been several suggestions for 
extending the capabilities of EBL, in particular for relaxing the problem of incomplete and 
and possibly incorrect domain knowledge by combining analytical (EBL) and inductive 
learning [83, 55, 63, 85]. 

A second shortcoming of EBL is its strong dependence of a "good" encoding of the 
domain theory rules, which makes it difficult to design a domain theory that produces correct 
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specializations. One approach for solving this problem is to employ a weaker semantic bias 
when searching for a solution path, which, however, requires the use of multiple training 
examples (EBL can, in principle, produce generalizations from single training examples) 
[25]. 

9.6    EBL and Visual Concepts 

In this section, we describe the principles of applying EBL in the context of structural feature 
analysis and visual concept acquisition. The first step is to define the basic elements of the 
EBL paradigm, i.e., objects, relations, inference rules, initial state, and goal state in terms 
of the structural feature domain. 

9.6.1    Elements of the Learning Problem 

The primitives involved in this learning approach are two-dimensional geometric primi- 
tives. The assumption is that we have suitable mechanism available for extracting these 
primitives from images. Primitive classes include zero-dimensional primitives (points), one- 
dimensional primitives (straight line segments, arcs), and fully two-dimensional primitives 
(closed curves, elliptical regions, parametric blobs, etc.), as indicated in Figure 9.2. We call 
these three primitive classes Vo, V\, and V2, respectively. 

The domain knowledge in this case consists of: 

1. the properties of the individual primitives, 

2. the spatial relations between primitives, and 

3. a set of operators for combining (grouping) primitives into more complex arrange- 
ments. 

The knowledge can be interpreted as a picture language (or algebra) for describing almost 
arbitrary configurations of picture primitives. In general, there is more than one possible 
description for a given arrangement of picture primitives. The learning problem consists of 
finding the simplest description (or a small set of simple descriptions) for a given picture 
configuration with respect to the current domain knowledge. The simplified descriptions 
found in the learning process become new intermediate-level visual concepts that are added 
to the current domain knowledge and can, in turn, become part of other object descriptions. 

To evaluate the complexity of a particular description, each operator is associated with 
a cost term that represents the complexity of applying that operator or transformation. A 
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similar approach is used in most approximate string matching techniques, where certain 
costs are associated with each character insertion, deletion, and replacement to compute a 
minimum "string edit" distance. The individual operator costs are assumed to be predefined 
and constant, at least originally. The questions of (a) how the operator costs should be 
related to the actual recognition mechanism and (b) if they can and should be learned pose 
interesting research topics. 

9.7    Future Work 

The work towards visual concept learning described in this chapter is still in an initial 
phase. Currently, our short-term goal in this problem area is to formalize the learning 
problem in precise terms and to specify suitable representations, learning algorithms, and 
performance measures. The plan is to adapt existing learning tools to this specific problem 
and to integrate these tools with other software components wherever possible. In addition, 
we are currently creating the necessary low-level operators for extracting structural features 
of various types that will allow to perform initial experiments on actual image data. 
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